【題目】現(xiàn)有一場專家報告會,張老師帶甲,乙,丙,丁四位同學參加,其中有一個特殊位置可與專家近距離交流,張老師看出每個同學都想去坐這個位置,因此給出一個問題,誰能猜對,誰去坐這個位置.問題如下:某班10位同學參加一次全年級的高二數(shù)學競賽,最后一道題只有6名同學,,,,嘗試做了,并且這6人中只有1人答對了.聽完后,四個同學給出猜測如下:甲猜:答對了;乙猜:不可能答對;丙猜:,當中必有1人答對了;丁猜:,,都不可能答對,在他們回答完后,張老師說四人中只有1人猜對,則張老師把特殊位置給了__________

【答案】

【解析】

分別假設甲、乙、丙三名同學猜對,結合條件判斷與題目是否矛盾。

若甲猜對,則乙也猜對,與題意不符,故甲猜錯;若乙猜對,則丙猜對,與題意不符,故乙猜錯;若丙猜對,則乙猜對,與題意不符,故丙猜錯.因為甲,乙,丙,丁四人中只有1人猜對,所以丁猜對.故張老師把特殊位置給了丁.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的單調遞減區(qū)間;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點.

1)求證:平面;

2)若,求二面角的大;

3)若線段上總存在一點,使得,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點分別為,,過點的直線與橢圓交于點,的周長為.

1)求橢圓的標準方程;

2)若.①當時,求直線的方程;

②證明是定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是平面直角坐標系中兩兩不同的四點,,,,則稱調和分割.已知平面上的點調和分割點,則下列說法正確的是

A. 可能線段的中點

B. 可能線段的中點

C. 可能同時在線段

D. 不可能同時在線段的延長線上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求證:直線AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照國際乒聯(lián)的規(guī)定,標準的乒乓球在直徑符合條件下,重量為2.7克,其重量的誤差在區(qū)間內就認為是合格產(chǎn)品,在正常情況下樣本的重量誤差服從正態(tài)分布.現(xiàn)從某廠生產(chǎn)的一批產(chǎn)品中隨機抽取10件樣本,其重量如下:

2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8

(1)計算上述10件產(chǎn)品的誤差的平均數(shù)及標準差;

(2)①利用(1)中求的平均數(shù),標準差,估計這批產(chǎn)品的合格率能否達到;

②如果產(chǎn)品的誤差服從正態(tài)分布,那么從這批產(chǎn)品中隨機抽取10件產(chǎn)品,則有不合格產(chǎn)品的概率為多少.(附:若隨機變量服從正態(tài)分布,則,.用0.6277,用0.9743分別代替計算)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的三內角AB,C所對的邊分別為ab,c,若cosA=cosB,b=,c=4,M,N是邊AC上的兩個動點,且AM=2CN,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出的是2017年11月-2018年11月某工廠工業(yè)原油產(chǎn)量的月度走勢圖,則以下說法正確的是( )

A. 2018年11月份原油產(chǎn)量約為51.8萬噸

B. 2018年11月份原油產(chǎn)量相對2017年11月增加1.0%

C. 2018年11月份原油產(chǎn)量比上月減少54.9萬噸

D. 2018年1-11月份原油的總產(chǎn)量不足15000萬噸

查看答案和解析>>

同步練習冊答案