(本題滿分12分)
是否存在常數(shù),使得函數(shù)在閉區(qū)間上的最大值為1?若存在,求出對應的值;若不存在,說明理由.
存在使得在閉區(qū)間上的最大值為1
解析試題分析:利用三角函數(shù)、二次函數(shù)的有關(guān)知識求解
, ……2分
① 若,則當時,取得最大值,
令,解得<2(舍去) ……………5分
②若,則當時,取得最大值,
令, 解得或<0(舍去) ……………8分
③若,則當時,取得最大值,
…………10分
令-=1,解得>0(舍去)
綜上,存在使得在閉區(qū)間上的最大值為1 ……………12分
考點:本題主要考查了閉區(qū)間二次函數(shù)最值,考查了分析問題、解決問題的能力,考查了運算求解能力,考查轉(zhuǎn)化化歸能力,考查了分類討論的能力。
點評:解決此類問題的關(guān)鍵是掌握分類討論的方法,較好的運算求解能力,難度較大。
科目:高中數(shù)學 來源: 題型:解答題
燕子每年秋天都要從北方飛到南方過冬。研究燕子的科學家發(fā)現(xiàn),兩歲燕子的飛行速度可以表示為函數(shù),單位是,其中表示燕子的耗氧量。
(1)計算:兩歲燕子靜止時的耗氧量是多少個單位?(5分)
(2)當一只兩歲燕子的耗氧量是80個單位時,它的飛行速度是多少?(5分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)已知.
(1)已知,分別求的值;
(2)畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間(不要求證明);
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
某商品在近30天內(nèi)每天的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系式為:
P=;該商品的日銷售量Q(件)與時間(天)的函數(shù)關(guān)系式為:
Q=-t+40(0<t≤30,t∈N*).求這種商品日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的哪一天?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為2萬元(總成本=固定成本+生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出函數(shù)的解析式;
(2)寫出利潤函數(shù)的解析式(利潤=銷售收入—總成本);
(3)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若數(shù)列 ,
求數(shù)列的通項公式;
(Ⅲ)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,請求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
某風景區(qū)有40輛自行車供游客租賃使用,管理這些自行車的費用是每日72元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數(shù)的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com