精英家教網 > 高中數學 > 題目詳情

在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊.如果a,b,c成等差數列,∠B=30°,△ABC的面積為,那么b=(    ).

A.           B.1+           C.           D.2+

 

【答案】

B

【解析】

試題分析:根據等差中項的性質可知2b=a+c.平方后整理得a2+c2=4b2-2ac.利用三角形面積求得ac的值,進而把a2+c2=4b2-2ac.代入余弦定理求得b的值.:∵a,b,c成等差數列,∴2b=a+c.平方得a2+c2=4b2-2ac.又△ABC的面積為,且∠B=30°,故由S=acsinB=ac?sin30°=ac=,得ac=6,∴a2+c2=4b2-12.由余弦定理,故選B

考點:正弦定理,余弦定理

點評:本題主要考查了解三角形的問題.解題過程中常需要正弦定理,余弦定理,三角形面積公式以及勾股定理等知識.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知y=f(x)函數的圖象是由y=sinx的圖象經過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2

③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案