(本小題14分)
已知函數(shù).
(Ⅰ)若,求曲線在處切線的斜率;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)設,若對任意,均存在,使得,求的取值范圍。
解:(Ⅰ)由已知,……………………………………………………(2分)
.
故曲線在處切線的斜率為.…………………………………(4分)
(Ⅱ).……………………………………………………(5分)
①當時,由于,故,
所以,的單調遞增區(qū)間為.………………………………………(6分)
②當時,由,得.
在區(qū)間上,,在區(qū)間上,
所以,函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.………(8分)
(Ⅲ)由已知,轉化為.…………………………………………………(9分)
……………………………………………………………………………(10分)
由(Ⅱ)知,當時,在上單調遞增,值域為,故不符合題意.
(或者舉出反例:存在,故不符合題意.)……………………(11分)
當時,在上單調遞增,在上單調遞減,
故的極大值即為最大值,,…………(13分)
所以,
解得. ………………………………………………………………………(14分)
【解析】略
科目:高中數(shù)學 來源:2011屆北京市東城區(qū)示范校高三第二學期綜合練習數(shù)學文卷 題型:解答題
(本小題14分)已知函數(shù).
(1)若,點P為曲線上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)在上為單調增函數(shù),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆陜西省高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題
(本小題14分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為1.
⑴ 求此二次函數(shù)的解析式;
⑵ 若函數(shù)的定義域為= .(其中). 問是否存在這樣的兩個實數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題
(本小題14分)已知函數(shù)
(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)求證:,…….
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期第一次調研考試數(shù)學試卷(實驗班) 題型:解答題
(本小題14分)已知函數(shù)f(x)=,x∈[1,+∞
(1)當a=時,求函數(shù)f(x)的最小值
(2)若對任意x∈[1,+∞,f(x)>0恒成立,試求實數(shù)a的取值范圍
(3)求f(x)的最小值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com