精英家教網(wǎng)如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),邊AB所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在邊AD所在直線上.
(1)求邊AD所在直線的方程;
(2)求點(diǎn)C的坐標(biāo);
(3)求矩形ABCD的面積.
分析:(1)由題意可得AB的斜率,進(jìn)而可得AD的斜率為-3,可得AD的點(diǎn)斜式方程,化為一般式即可;
(2)可得A的坐標(biāo),由中點(diǎn)坐標(biāo)公式可得點(diǎn)C的坐標(biāo);
(3)由平行關(guān)系可設(shè)CD的方程為x-3y+c=0,代點(diǎn)C的坐標(biāo)可得c值,進(jìn)而可得CD的方程,|AD|為平行線間的距離,由勾股定理可得|AB|,可得面積.
解答:解:(1)由題意可得AB的斜率為
1
3

∴AD的斜率為-3,又AD過(guò)點(diǎn)T(-1,1)
∴邊AD所在直線的方程為y-1=-3(x+1),
化為一般式可得3x+y+2=0;
(2)由(1)AD的方程為3x+y+2=0,
令x=0可解得y=-2,∴A(0,-2)
設(shè)C(x,y),由中點(diǎn)坐標(biāo)公式可得
x+0
2
=2
y-2
2
=0
,
解得x=4,y=2,∴點(diǎn)C的坐標(biāo)為(4,2);
(3)由平行關(guān)系可設(shè)CD的方程為x-3y+c=0,
代入點(diǎn)C(4,2)可得c=2,
故CD的方程為x-3y+2=0,
由平行線間的距離公式可得|AD|=
|-6-2|
12+(-3)2
=
4
10
5
,
又|AC|=2|AM|=2
(0-2)2+(-2-0)2
=4
2
,
由勾股定理可得|AB|=
(4
2
)2-(
4
10
5
)2
=
8
10
5

∴矩形ABCD的面積為
4
10
5
×
8
10
5
=
64
5
點(diǎn)評(píng):本題考查直線的一般式方程和直線的平行關(guān)系,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上.求:
(1)AD邊所在直線的方程;
(2)DC邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)如圖,矩形ABCD的三個(gè)頂點(diǎn)A、B、C分別在函數(shù)y=log
2
2
x,y=x
1
2
,y=(
2
2
)x
的圖象上,且矩形的邊分別平行于兩坐標(biāo)軸,若點(diǎn)A的縱坐標(biāo)為2,則點(diǎn)D的坐標(biāo)為
1
2
1
4
1
2
,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的對(duì)角線AC,BD交于O,AB=4,AD=3.沿AC把△ACD折起,使二面角D1-AC-B為直二面角.
(1)求直線AD1與直線DC所成角的余弦值;
(2)求二面角A-DD1-C的平面角正弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•佛山二模)某物流公司購(gòu)買了一塊長(zhǎng)AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設(shè)占地如圖中矩形ABCD的倉(cāng)庫(kù),其余地方為道路或停車場(chǎng),要求頂點(diǎn)C在地塊對(duì)角線MN上,頂點(diǎn)B,D分別在邊AM,AN上,設(shè)AB長(zhǎng)度為x米.
(1)要使倉(cāng)庫(kù)占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設(shè)的倉(cāng)庫(kù)是高度與AB的長(zhǎng)度相等的長(zhǎng)方體建筑,問(wèn)AB的長(zhǎng)度是多少時(shí),倉(cāng)庫(kù)的庫(kù)容量最大?(墻地及樓板所占空間忽略不計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的邊長(zhǎng)分別為2和1,陰影部分是直線y=1和拋物線y=x2圍成的部分,在矩形ABCD中隨機(jī)撒100粒豆子,落到陰影部分70粒,據(jù)此可以估計(jì)出陰影部分的面積是
7
5
7
5

查看答案和解析>>

同步練習(xí)冊(cè)答案