極坐標方程4ρsin2=5所表示的圖形是

[  ]

A.圓  B.橢圓  C.雙曲線  D.拋物線

答案:D
解析:

解: 原方程化為4ρ·=5

2ρ-2ρcosθ=5

2ρ=5+2ρcosθ, 即2=5+2x

平方得: 4(x2+y2)=25+20x+4x2.

y2=5x+.

∴是拋物線, 選D.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+
π
4
)=
2
2
a,曲線C2的參數(shù)方程為
x=-1+cosφ
x=-1+sinφ
(φ為參數(shù),0≤φ≤π),
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個不同公共點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(附加題-選做題)(坐標系與參數(shù)方程)
已知曲線C的參數(shù)方程為
x=sinα
y=cos2α
,α∈[0,2π),曲線D的極坐標方程為ρsin(θ+
π
4
)=-
2

(1)將曲線C的參數(shù)方程化為普通方程;
(2)曲線C與曲線D有無公共點?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)(1)若關(guān)于x的不等式|x-1|+|x+m|>3的解集為R,則實數(shù)m的取值范圍是
(-∞,-4)∪(2,+∞)
(-∞,-4)∪(2,+∞)

(2)已知⊙O的割線PAB交⊙于A,B兩點,割線PCD經(jīng)過圓心,若PA=3,AB=4,PO=5,則⊙O的半徑為
2
2

(3)過點(2,
π
3
)
且平行于極軸的直線的極坐標方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•增城市模擬)(坐標系與參數(shù)方程選做題)已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,則點(0,0)到這條直線的距離是
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
為參數(shù)).
(Ⅰ)求圓M上的點到直線的距離的最小值;
(Ⅱ)若過點C(2,0)的直線l與圓M交于A、B兩點,且
CA
=
AB
,求直線l的斜率.

查看答案和解析>>

同步練習冊答案