已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×<(n≥2,n∈N*).

(1)f(x)的單調(diào)增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1)
(2)-<m<-9    (3)見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•廣東)設(shè)a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當a=l時,求的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(1)是否存在實數(shù),使得函數(shù)上單調(diào)遞增?若存在,求出的值或取值范圍;否則,請說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為,求函數(shù)的極大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當  時,求函數(shù)  的最小值;
(2)當 時,求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實數(shù),對任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導函數(shù).證明:對任意

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時,f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預計當每件產(chǎn)品的售價為元()時,一年的銷售量為萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系;
(2)當每件產(chǎn)品的售價為多少時,公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

同步練習冊答案