知1≤a≤3,-4<b<2,則a+|b|的取值范圍是
 
考點(diǎn):不等關(guān)系與不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:由b的范圍求得|b|的范圍,然后直接利用不等式的可加性得答案.
解答: 解:∵-4<b<2,
故 0<|b|<4,
又1≤a≤3,
∴1<a+|b|<7.
故答案為:(1,7).
點(diǎn)評(píng):本題考查了不等式的性質(zhì),考查了不等式的可加性,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x+1)=x2-2.
(1)求f(2)的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax-1(e為自然對(duì)數(shù)的底數(shù)),a>0.
(Ⅰ)若函數(shù)f(x)恰有一個(gè)零點(diǎn),證明:aa=ea-1;
(Ⅱ)若f(x)≥0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

重慶實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校高二年級(jí)將從個(gè)班推選出來(lái)的6個(gè)男生,5個(gè)女生中任選3人組建“重外學(xué)生文明督察崗”,則下列事件中互斥不對(duì)立的事件是( 。
A、“3個(gè)都是男生”和“至多1個(gè)女生”
B、“至少有2個(gè)男生”和“至少兩個(gè)女生”
C、“恰有2個(gè)女生”和“恰有1個(gè)或3個(gè)男生”
D、“至少有2個(gè)女生”和“恰有2個(gè)男生”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|-x2+3x-2≤0},集合A={x||x-2|>1},集合B={x|
(x-1)
(x-2)
≥0}求:
(1)A∩B
(2)A∪B  
(3)A∩∁UB  
(4)∁UA∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
a•2x-2+a
2x+1+2
(x∈R),若對(duì)x∈R,都有f(-x)=-f(x)成立.
(1)求實(shí)數(shù)a 的值,并求f(1)值;
(2)討論函數(shù)的單調(diào)性,并證明;
(3)解不等式 f(2t2-t)+f(t2-2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+3)2+(y-4)2=4
(1)若直線l1過(guò)點(diǎn)A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為1,圓心D在直線l2:x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|-2<x<3},N={x|2x+1≥1},則M∩N等于( 。
A、(-2,-1]
B、(-2,1]
C、[1,3)
D、[-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,2),
b
=(4,k),若
a
b
,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案