【題目】已知實(shí)數(shù)對(duì)(x,y),設(shè)映射f:(x,y)→( , ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=8,則|(x,y)|的值為(
A.4
B.8
C.16
D.32

【答案】C
【解析】解:∵映射f:(x,y)→( , ),
∴f[f(f(x,y))]=f(f( , ))=f( , )=( , ),
∵定義|(x,y)|= ,若|f[f(f(x,y))]|=8,
∴|( , )|=8,
=8,

∴|(x,y)|的值為16 ,
故選:C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解映射的相關(guān)定義的相關(guān)知識(shí),掌握對(duì)于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:,q:x2+y2>r2(r>0),pq的充分不必要條件,求實(shí)數(shù)r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程=0.

(1)若a是從集合A={x∈Z|0≤x≤3}中任取一個(gè)元素,b是從集合B={x∈Z|0≤x≤2}中任取一個(gè)元素,求方程=0恰有兩個(gè)不相等實(shí)根的概率;

(2) 若a是從集合A={x|0≤x≤3}中任取一個(gè)元素,b是從集合B={x|0≤x≤2}中任取一個(gè)元素,求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為正實(shí)數(shù)

Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

Ⅱ)若方程在區(qū)間上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(2)若對(duì)任意的, 為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且cos2 = ,△ABC的面積為4.
(1)求 的值;
(2)若2sinB=5sinC,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2是橢圓C的左右焦點(diǎn),點(diǎn)A,B為其左右頂點(diǎn),P為橢圓C上(異于A、B)的一動(dòng)點(diǎn),當(dāng)P點(diǎn)坐標(biāo)為(1, )時(shí),△PF1F2的面積為 ,分別過點(diǎn)A、B、P作橢圓C的切線l1 , l2 , l,直線l與l1 , l2分別交于點(diǎn)R,T.

(1)求橢圓C的方程;
(2)(i)求證:以RT為直徑的圓過定點(diǎn),并求出定點(diǎn)M的坐標(biāo);
(ii)求△RTM的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列4個(gè)命題,其中正確命題的個(gè)數(shù)是(
①計(jì)算:9192除以100的余數(shù)是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù);
④命題p:“|a|+|b|≤1”是命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市自來水公司每?jī)蓚(gè)月(記為一個(gè)收費(fèi)周期)對(duì)用戶收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過噸時(shí),按每噸元收;當(dāng)該用戶用水量超過噸時(shí),超出部分按每噸元收取

(1)記某用戶在一個(gè)收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫出關(guān)于的函數(shù)解析式.

(2)在某一個(gè)收費(fèi)周期內(nèi),若甲、乙兩用戶所繳水費(fèi)的和為元,且甲、乙兩用戶用水量之比為,試求出甲、乙兩用戶在該收費(fèi)周期內(nèi)各自的用水量和水費(fèi)

查看答案和解析>>

同步練習(xí)冊(cè)答案