某工廠生產(chǎn)兩批產(chǎn)品,第一批的10件產(chǎn)品中優(yōu)等品有4件;第二批的5件產(chǎn)品中優(yōu)等品有3件,現(xiàn)采用分層抽樣方法從兩批產(chǎn)品中共抽取3件進行質(zhì)量檢驗.
(I)求從兩批產(chǎn)品各抽取的件數(shù);
(Ⅱ)記ξ表示抽取的3件產(chǎn)品中非優(yōu)等品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.
(I)∵第一批有10件產(chǎn)品,第二批有5件產(chǎn)品,
現(xiàn)采用分層抽樣方法從兩批產(chǎn)品中共抽取3件進行質(zhì)量檢驗,
∴每個個體被抽到的概率是
3
10+5
=
1
5

∴第一批應(yīng)抽取
1
5
×10
=2件,
第二批應(yīng)抽取
1
5
×5
=1件;
(Ⅱ)∵ξ表示抽取的3件產(chǎn)品中非優(yōu)等品的件數(shù),
∴ξ的可能取值為0,1,2,3
P(ξ=0)=
C24
C210
×
C13
C15
=
6
75

P(ξ=1)=
C14
C16
C13
C210
C15
+
C24
C12
C210
C15
=
28
75

P(ξ=3)=
C26
C12
C210
C15
=
10
75

P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=
31
75

∴ξ的分布列如下:

Eξ=0×
6
75
+1×
28
75
+2×
31
75
+3×
10
75
=
8
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)離散型隨機變量的分布列P(=)=ak,k=1,2,3,4,5.
(1)求常數(shù)a的值;
(2)求P();
(3)求P().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數(shù)為ai,若存在正整數(shù)k,使a1 + a2 +…+ak = 6,則稱k為你的幸運數(shù)字.  (1)求你的幸運數(shù)字為4的概率;(2)若k = 1,則你的得分為6分;若k = 2,則你的得分為4分;若k = 3,則你的得分為2分;若拋擲三次還沒找到你的幸運數(shù)字則記0分.求得分的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a和b分別是先后拋擲一枚骰子得到的點數(shù),且隨機變量ξ表示方程ax2+bx+1=0的實根的個數(shù)(相等的兩根算一個根).
(1)求方程ax2+bx+1=0無實根的概率;
(2)求隨機變量ξ的概率分布列;
(3)求在先后兩次出現(xiàn)的點數(shù)中有4的條件下,方程ax2+bx+1=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有甲、乙兩個靶,某射手進行射擊訓(xùn)練,每次射擊擊中甲靶的概率是p1,每次射擊擊中乙靶的概率是p2,其中p1>p2,已知該射手先后向甲、乙兩靶各射擊一次,兩次都能擊中與兩次都不能擊中的概率分別為
8
15
1
15
.該射手在進行射擊訓(xùn)練時各次射擊結(jié)果互不影響.
(Ⅰ)求p1,p2的值;
(Ⅱ)假設(shè)該射手射擊乙靶三次,每次射擊擊中目標(biāo)得1分,未擊中目標(biāo)得0分.在三次射擊中,若有兩次連續(xù)擊中,而另外一次未擊中,則額外加1分;若三次全擊中,則額外加3分.記η為該射手射擊三次后的總的分數(shù),求η的分布列;
(Ⅲ)某研究小組發(fā)現(xiàn),該射手在n次射擊中,擊中目標(biāo)的次數(shù)X服從二項分布.且射擊甲靶10次最有可能擊中8次,射擊乙靶10次最有可能擊中7次.試探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對某電子元件進行壽命追蹤調(diào)查,情況如表:
壽命/小時100~200200~300300~400400~500500~600
個數(shù)2030804030
(1)完成頻率分布表;
分組頻數(shù)頻率
100~200
200~300
300~400
400~500
500~600
合計
(2)完成頻率分布直方圖;

(3)在上述追蹤調(diào)查的電子元件中任取2個,設(shè)ξ為其中壽命在400~500小時的電子元件個數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A型車
出租天數(shù)1234567
車輛數(shù)51030351532
B型車
出租天數(shù)1234567
車輛數(shù)1420201615105
( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學(xué)的統(tǒng)計知識,給出建議應(yīng)該購買哪一種車型,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量ξ的分布列如下
ξ
-1
0
1
P
a
b
c
 
其中a,b,c成等差數(shù)列,若E(ξ)=,則D(ξ)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一盒中裝有零件12個,其中有9個正品,3個次品,從中任取一個,如果每次取出次品就不再放回去,再取一個零件,直到取得正品為止.求在取得正品之前已取出次品數(shù)的期望.

查看答案和解析>>

同步練習(xí)冊答案