已知向量
a
,
b
,|
a
|=1,|
b
|=2,則|2
b
-
a
|的取值范圍是
 
考點(diǎn):向量的模
專題:平面向量及應(yīng)用
分析:利用向量數(shù)量積運(yùn)算性質(zhì)、余弦函數(shù)的單調(diào)性即可得出.
解答: 解:設(shè)<
a
,
b
>=θ.
|2
b
-
a
|=
4
b
2
+
a
2
-4
a
b
=
22+1-4×2×1•cosθ
=
17-8cosθ

∵-1≤cosθ≤1,
∴9≤17-8cosθ≤25,
∴|2
b
-
a
|的取值范圍是[3,5].
故答案為:[3,5].
點(diǎn)評:本題考查了向量數(shù)量積運(yùn)算性質(zhì)、余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:y2=2px(p>0)上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交與A、B兩點(diǎn),且直線AB過點(diǎn)(0,-1),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=AC,延長AB到D,使BD=AB,AB的中點(diǎn)E,則
CD
CE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為2的等比數(shù)列,則
a1+a2+a3
a3+a4+a5
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是△ABC中的最小角,且cosA=
a-1
2
,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為1的正方形ABCD的頂點(diǎn)A,D分別在x軸,y軸正半軸上移動,則
OB
OC
≥1+
3
2
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2ex在區(qū)間(a,a+1)上存在極值點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D為不等式組
x≥0
x-y≤0
x+y-3≤0
所表示的平面區(qū)域,區(qū)域D上的點(diǎn)與點(diǎn)(1,0)之間的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下敘述:
①半徑為1的圓中,60°的圓心角所對的弧的長度為
π
3
;
②已知函數(shù)f(x)=
1+x2
1-x2
(x≠±1),則f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3;
③函數(shù)y=-tan(2x-
4
)的單調(diào)遞減區(qū)間是(
2
+
π
8
,
2
+
8
),k∈Z;
④設(shè)集合A=[0,
1
2
),B=[
1
2
,1],函數(shù)f(x)=
x+
1
2
(x∈A)
-2x+2(x∈B)
.若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(
1
4
,
1
2
).
其中所有正確敘述的序號是
 

查看答案和解析>>

同步練習(xí)冊答案