已知f(x)=ex,m<n,A=f(n)-f(m).B=
1
2
(n-m)[f(n)+f(m)],求A與B的大小關(guān)系.
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用特殊值驗證,推出A,B的大小,然后利用反證法推出A=B不成立,得到結(jié)果.
解答: 解:不妨令n=1,m=0,則A=e-1,B=
1
2
(e+1).
∵e<3,⇒2e-2<e+1⇒e-1<
1
2
(e+1).
即A<B.
若A=B,則en-en=
1
2
(n-m)(en+em),
整理得:(2-n+m)en=(n-n+2)em
觀察可得m=n,與m<n矛盾,
綜上,A<B.
點(diǎn)評:本題考查函數(shù)的單調(diào)性的應(yīng)用,如果常用直接法,解答本題難度比較大.考查學(xué)生靈活解題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=2x-
x+1
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ex+1,x<1
x2-1,x≥1
,則f[f(0)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn)為F1,F(xiàn)2,左準(zhǔn)線為l,P為橢圓上一點(diǎn),PQ⊥l,垂足為Q.若四邊形PQF1F2為平行四邊形,則橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述:
(1)集合N中最小的正數(shù)是1;
(2)若-a∈N,則a∈N
(3)方程x2-6x+9=0的解集是{3,3};
(4){4,3,2}與{3,2,4}是不同的集合.
其中正確的敘述個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過三點(diǎn)A(1,12),B(7,10),C(-9,2)的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次性隨機(jī)摸出2只球,則恰好有1只是白球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),M是雙曲線上的一點(diǎn),且滿足
F1M
F2M
+2a2=0,則雙曲線的離心率的取值范圍是( 。
A、(1,
3
B、(
3
,+∞)
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F(xiàn),G分別為PB,BBC,AP的中點(diǎn).
(Ⅰ)求證:平面EFG∥平面PCD;
(Ⅱ)若CD=PD=2,求三棱錐E-CDF的體積.

查看答案和解析>>

同步練習(xí)冊答案