如圖,正三棱柱中,側(cè)面是邊長為2的正方形,的中點,在棱上.

(1)當時,求三棱錐的體積.
(2)當點使得最小時,判斷直線是否垂直,并證明結(jié)論.
(1),(2)垂直,利用線面垂直證明線線垂直

試題分析:(1)因為側(cè)面是邊長為2的正方形,


(2)解法1:將側(cè)面展開到側(cè)面得到矩形,連結(jié),交于點,此時點使得最小.此時平行且等于的一半,的中點.連接
中,
中,
在等腰中,
所以由,有勾股定理知

解法2:將側(cè)面展開到側(cè)面得到矩形,連結(jié),交于點,此時點使得最小.此時平行且等于的一半,的中點.過點,連接,由知四邊形所以.在正三棱柱中知,而,所以.

點評:以棱錐為載體考查立體幾何中的線面、面面、點面位置關(guān)系或體積是高考的亮點,掌握其判定性質(zhì)及定理,是解決此類問題的關(guān)鍵
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,的交點,平面是側(cè)棱的中點,異面直線所成角的大小是60.

(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)正四棱錐的側(cè)面積為,若

(1)求四棱錐的體積;
(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正方體中,面中心為

(1)求證:;
(2)求異面直線所成角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形中,為正三角形,,交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,四棱錐的底面是正方形,側(cè)棱與底面邊長均為2,則其側(cè)視圖的面積為_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于任意的直線與平面,在平面內(nèi)必有直線,使(     )
A.平行B.相交C.垂直D.互為異面直線

查看答案和解析>>

同步練習冊答案