已知命題p:?x∈R,cosx=
5
4
;命題q:?x∈R,x2-x+1>0.則下列結(jié)論正確的是( 。
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題(¬p)∧(¬q)是真命題
D、命題(¬p)∨(¬q)是真命題
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:本題考查復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答:解:命題p:∵cosx≤1,
∴不存在x,使得cosx=
5
4
成立,
∴命題p是假命題;
命題q:∵x2-x+1=(x-
1
2
)2+
3
4
>0

∴命題q是真命題;
∴¬p是真命題,¬q是假命題;
∴¬p∨¬q是命題;
故選D
點(diǎn)評:本題考查的知識點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
cos(ωx+φ)+1(ω>0)的圖象的一條對稱軸為直線x=
π
3
,且f(
π
12
)=1,則ω的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2012,其前n項(xiàng)和為Sn,若
S2012
2012
-
S10
10
=2002
,則S2014的值等于( 。
A、2011B、-2012
C、2014D、-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
2x-y+6≥0
x+y≥0
x≤2
,若目標(biāo)函數(shù)z=-mx+y的最大值為-2m+10,最小值為-2m-2,則實(shí)數(shù)m的取值范圍是( 。
A、[-1,2]
B、[-2,1]
C、[2,3]
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原命題為“若z1,z2互為共軛復(fù)數(shù),則|z1|=|z2|”,關(guān)于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( 。
A、真,假,真B、假,假,真C、真,真,假D、假,假,假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“對任意x∈R,都有x3>x2”的否定是(  )
A、存在x0∈R,使得x03>x02B、不存在x0∈R,使得x03>x02C、存在x0∈R,使得x03≤x02D、對任意x∈R,都有x3≤x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯(cuò)誤的是( 。
A、若命題P:?x0∈R,x02-x0+1≥0,則¬P:?x∈R,x2-x+1<0
B、若命題p∨q為真,則p∧q為真
C、一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同
D、根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為
y
=
a
+
b
x中,若
b
=2,
.
x
=1,
.
y
=3,則
a
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)W是由一平面內(nèi)的n(n≥3)個(gè)向量組成的集合,若
a
∈W,且
a
的模不小于W中除
a
外的所有向量和的模,則稱
a
是W的極大向量,下列命題:
①若W中每個(gè)向量方向都相同,則W中必存在一個(gè)極大向量;
②給定平面內(nèi)兩個(gè)不共線向量
a
、
b
,在該平面內(nèi)總存在唯一的平面向量
c
,使得W={
a
,
b
c
}中的每個(gè)元素都是極大向量;
③若W1={
a1
,
a2
,
a3
}、W2={
b1
b2
,
b3
}中的中的每個(gè)元素都是極大向量,則W1∪W2中的每一個(gè)元素也都是極大向量.
其中真命題的個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by+c=0與拋物線y2=2x交于P,Q兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線PF,QF分別交拋物線于點(diǎn)M,N,則直線MN的方程為( 。
A、4cx-2by+a=0B、ax-2by+4c=0C、4cx+2by+a=0D、ax+2by+4c=0

查看答案和解析>>

同步練習(xí)冊答案