精英家教網 > 高中數學 > 題目詳情

已知A(-2,0),B(2,0),動點P(x,y)滿足數學公式,則動點P的軌跡為


  1. A.
    橢圓
  2. B.
    雙曲線
  3. C.
    拋物線
  4. D.
    兩條平行直線
D
分析:由題意知(-2-x,y)•(2-x,y)=x2,即可得出動點P的軌跡.
解答:∵動點P(x,y)滿足 =x2,
∴(-2-x,y)•(2-x,y)=x2,
∴點P的方程為y2=4即y=±2
∴動點P的軌跡為兩條平行的直線.
故選D.
點評:本題考查點的軌跡方程,解題時要注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直角坐標系中,以M(-1,0)為圓心的圓與直線x-
3
y-3=0
相切.
(1)求圓M的方程;
(2)已知A(-2,0)、B(2,0),圓內動點P滿足|PA|•|PB|=|PO|2,求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系下,已知A(2,0),B(0,2),C(cos2x,sin2x),(0<x<
π
2
),f(x)=
AB
AC

(Ⅰ)求f(x)的表達式;
(Ⅱ)求f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A(2,0),B(0,1)為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上的兩點,P(x,y)為橢圓C上的動點,O為坐標原點.
( I)求橢圓C的方程;
( II)將|OP|表示為x的函數,并求|OP|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a=(2,0),b=(
12
,-2),則a•b=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A(-2,0)、B(2,0),且△ABC的周長等于10,則頂點C的軌跡方程為
x2
9
+
y2
5
=1  (y≠0)
x2
9
+
y2
5
=1  (y≠0)

查看答案和解析>>

同步練習冊答案