6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為


  1. A.
    12
  2. B.
    9
  3. C.
    6
  4. D.
    5
B
分析:本題可以分為兩類進行研究,一類是乙和丙之一在A社區(qū),另一在B社區(qū),二類是乙和丙在B社區(qū),計算出每一類的數(shù)據,然后求其和即可
解答:由題意將問題分為兩類求解
第一類,若乙與丙之一在甲社區(qū),則安排種數(shù)為A21×A31=6種
第二類,若乙與丙在B社區(qū),則A社區(qū)沿缺少一人,從剩下三人中選一人,另兩人去C社區(qū),故安排方法種數(shù)為A31=3種
故不同的安排種數(shù)是6+3=9種
故選B
點評:本題考點是計數(shù)原理的應用,考查了分類與分步兩大計數(shù)原理及排列數(shù)公式,是計數(shù)原理中的基本題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三第二次教學質量考試數(shù)學理卷 題型:選擇題

6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為(   )

A.12      B.9       C.6      D.5

 

查看答案和解析>>

科目:高中數(shù)學 來源:杭州二模 題型:單選題

6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為( 。
A.12B.9C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源:《排列、組合、二項式定理》2013年高考數(shù)學二輪復習專題測試10(解析版) 題型:選擇題

6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為( )
A.12
B.9
C.6
D.5

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省杭州市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

6名同學安排到3個社區(qū)A,B,C參加志愿者服務,每個社區(qū)安排兩名同學,其中甲同學必須到A社區(qū),乙和丙同學均不能到C社區(qū),則不同的安排方法種數(shù)為( )
A.12
B.9
C.6
D.5

查看答案和解析>>

同步練習冊答案