【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證:.
【答案】(Ⅰ)見解析(Ⅱ)見證明
【解析】
(Ⅰ)利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系求解;
(Ⅱ)af(x)>lnx.令F(x),F′(x)(x>0).
①當(dāng)∈(0,1]時(shí),F′(x)<0,F(x)單調(diào)遞減,F(x)≥F(1)=ae>0;
②當(dāng)>1時(shí),令G(x),利用導(dǎo)數(shù)求得最小值大于0即可.
解.(1)f(x)的定義域?yàn)椋ī仭蓿?/span>0)∪(0,+∞),
∵,
∴x∈(﹣∞,0),(0,1)時(shí),f′(x)<0,x∈(1,+∞)時(shí),f′(x)>0
∴函數(shù)f(x)的單調(diào)增區(qū)間為:(1,+∞),減區(qū)間為(﹣∞,0),(0,1).
(2)af(x)>lnx.
令F(x),
F′(x).(x>0).
①當(dāng)x∈(0,1]時(shí),F′(x)<0,F(x)單調(diào)遞減,F(x)≥F(1)=ae>0;
②當(dāng)x>1時(shí),令G(x),G.
∴G(x)在(1,+∞)單調(diào)遞增,
∵x→1時(shí),G(x)→﹣∞,G(2)=e20,
∴G(x)存在唯一零點(diǎn)0∈(1,2),
F(x)min=F(x0)
∵G(x0)=0,.
綜上所述,當(dāng)時(shí),af(x)>lnx成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線上一點(diǎn)的極坐標(biāo)為,且過點(diǎn),求的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),與的交點(diǎn)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長(zhǎng)為,是的中點(diǎn).
(1)求證:直線平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間幾何體ABCDFE中,底面是邊長(zhǎng)為2的正方形,,,.
(1)求證:AC//平面DEF;
(2)已知,若在平面上存在點(diǎn),使得平面,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一網(wǎng)購(gòu)狂歡節(jié)”源于淘寶商城(天貓)2009年11月11日舉辦的促銷活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營(yíng)業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動(dòng)的固定日期.如今,中國(guó)的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購(gòu)物日”.某淘寶電商為分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬元)和利潤(rùn)(單位:十萬元)之間的關(guān)系,搜集了相關(guān)數(shù)據(jù),得到下列表格:
(1)請(qǐng)用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(2)建立關(guān)于的線性回歸方程(系數(shù)精確到),預(yù)測(cè)當(dāng)宣傳費(fèi)用為萬元時(shí)的利潤(rùn),
附參考公式:回歸方程中和最小二乘估計(jì)公式分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):
,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(20)班共50名學(xué)生,在期中考試中,每位同學(xué)的數(shù)學(xué)考試分?jǐn)?shù)都在區(qū)間內(nèi),將該班所有同學(xué)的考試分?jǐn)?shù)分為七個(gè)組:,,,,,,,繪制出頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,估計(jì)這次考試學(xué)生成績(jī)的中位數(shù)和平均數(shù);
(2)已知成績(jī)?yōu)?04分或105分的同學(xué)共有3人,現(xiàn)從成績(jī)?cè)?/span>中的同學(xué)中任選2人,則至少有1人成績(jī)不低于106分的概率為多少?(每位同學(xué)的成績(jī)都為整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且, , 為的中點(diǎn).
(1)求證: 平面;
(2)若,求平面與平面所成的銳二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com