精英家教網 > 高中數學 > 題目詳情

已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.

(1) x2=2y(x≠0)   (2) x-y-1=0或x+y+1=

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知拋物線C1:x2+by=b2經過橢圓C2:+=1(a>b>0)的兩個焦點.

(1)求橢圓C2的離心率;
(2)設點Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△QMN的重心在拋物線C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,橢圓過點P(1, ),其左、右焦點分別為F1,F2,離心率e=,M,N是直線x=4上的兩個動點,且·=0.

(1)求橢圓的方程;
(2)求|MN|的最小值;
(3)以MN為直徑的圓C是否過定點?請證明你的結論。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設動點P(x,y)(x≥0)到定點F的距離比到y(tǒng)軸的距離大.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當M運動時弦長BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設直線PF1,PF2的斜率分別為k1k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知線段AB的兩個端點A,B分別在x軸、y軸上滑動,|AB|=3,點M滿足2=.
(1)求動點M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓:的離心率,原點到過點,的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點關于直線的對稱點為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點,,且,都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓過點,且離心率.

(1)求橢圓的標準方程;
(2)若直線與橢圓相交于,兩點(不是左右頂點),橢圓的右頂點為,且滿足,試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知命題:方程表示焦點在y軸上的橢圓;
命題:雙曲線的離心率,若為真命題,為假命題,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案