已知矩陣M=(
10
0-1
),N=(
12
34
).
(Ⅰ)求使得MX=N成立的二階矩陣X;
(Ⅱ)求矩陣X的特征值以及每個特征值所對應(yīng)的一個特征向量.
考點:特征值與特征向量的計算
專題:選作題,矩陣和變換
分析:(Ⅰ)求出M-1=
10
0-1
,利用X=M-1N,可求二階矩陣X;
(Ⅱ)根據(jù)特征值的定義列出特征多項式,令f(λ)=0解方程可得特征值,再由特征值列出方程組即可解得相應(yīng)的特征向量.
解答: 解:(Ⅰ)M=(
10
0-1
),|M|=-1,
∴M-1=
10
0-1
,
∴X=M-1N=
12
-3-4
;
(Ⅱ)矩陣M的特征多項式為f(λ)=(λ+1)(λ+2),
令f(λ)=0,可求得特征值為λ1=-1,λ2=-2,
設(shè)λ1=-1對應(yīng)的一個特征向量為α=
x
y
,
則由λ1α=Mα,得x+y=0,可令x=1,則y=-1,
∴矩陣M的一個特征值λ1=1對應(yīng)的一個特征向量為
1
-1
,
同理可得矩陣M的一個特征值λ2=-2對應(yīng)的一個特征向量為
2
-3
點評:本小題主要考查矩陣與變換、矩陣的特征值與特征向量等基礎(chǔ)知識,考查運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7人站成一排,其中甲不排頭,乙不排當(dāng)中的不同排法種數(shù)為( 。
A、4000B、3720
C、960D、1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,過右焦點F1作與坐標(biāo)軸垂直的弦且弦長為
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=-x+m與橢圓C交于A,B兩點,當(dāng)以AB為直徑的圓與y軸相切時,求△F1AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3
OA
+2
OB
=(13,1),
OA
-
OB
=(1,-3).
(1)求向量
OA
OB
的坐標(biāo);
(2)在直角坐標(biāo)系中,O為坐標(biāo)原點,以向量
OA
OB
為鄰邊作平行四邊形OACB,求向量
AB
的坐標(biāo);
(3)設(shè)向量
OA
OB
的夾角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然對數(shù)的底數(shù)時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°.
(1)求證:BD⊥PC;
(2)求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=
1
2
,且滿足an=
an+1
1-2an+1

(1)求證:數(shù)列{
1
an
}是等差數(shù)列;
(2)設(shè)bn=anan+1,bn的前n項和為Sn,求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD.PA=AB=2,∠BAD=120°,E是PC上的一點,且BE與平面PAB所成角的正弦值為
3
4

(1)證明:E為PC的中點;
(2)求二面角A-BE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2,n∈N*,數(shù)列{bn}滿足:bn=2n•an,且{bn}的前n項和記為Tn
(1)求數(shù)列{an}與{bn}的通項公式;
(2)證明:對任意n∈N*,Tn≥2恒成立.

查看答案和解析>>

同步練習(xí)冊答案