若非零向量
a
,
b
,滿足|
a
|=|
b
|=|
a
-
b
|,則
b
a
-
b
的夾角為(  )
A、30°B、60°
C、120°D、150°
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由條件利用兩個(gè)向量的加減法的法則,以及其幾何意義,可得
b
a
-
b
的夾角.
解答: 解:設(shè)
OA
=
a
OB
=
b
,則
BA
=
a
-
b

由|
a
|=|
b
|=|
a
-
b
|,可得 OA=OB=AB,∴△OAB為等邊三角形.
b
a
-
b
的夾角為∠OBA的補(bǔ)角,等于120°,
故選:C.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且焦點(diǎn)在x軸上,且橢圓截直線y=x+2所得線段AB的長(zhǎng)為16
2
5

(1)求橢圓的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α是第一象限角,且cosα=
5
13
,求:
2sin(α-3π)-3cos(-α)
4sin(α-5π)+9cos(3π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊上一點(diǎn)坐標(biāo)為P(-3t,4t)(t≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x-3,g(x)=(
1
9
x,解不等式f(x)<g(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx,g(x)=
1
2
bx2-2x+2,a,b∈R.
(Ⅰ)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0,h(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(Ⅱ)記函數(shù)F(x)=|f(x)|,若存在一條過原點(diǎn)的直線l與y=F(x)的圖象有兩個(gè)切點(diǎn),求a的取值范圍,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(k•2x+1-2),k∈R.
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的定義域;
(2)當(dāng)k=3是,求函數(shù)f(x)的零點(diǎn);
(3)若函數(shù)f(x)在區(qū)間[0,10]上總有意義,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x+b
,(a,b∈R),若f(x)為奇函數(shù),且f(1)=5.
(1)求函數(shù)f(x)的解析式;
(2)用定義判斷f(x)在(0,+∞)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某區(qū)為了解全區(qū)2800名九年級(jí)學(xué)生英語口語考試成績(jī)的情況,從中隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分24分,得分均為整數(shù)),制成下表:
分?jǐn)?shù)段
(x分)
x≤1617≤x≤1819≤x≤2021≤x≤2223≤x≤24
人 數(shù)101535112128
(1)填空:
①本次抽樣調(diào)查共抽取了
 
名學(xué)生;
②學(xué)生成績(jī)的中位數(shù)落在
 
分?jǐn)?shù)段;
③若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為x≤16的人數(shù)所對(duì)應(yīng)扇形的圓心角為
 
°;
(2)如果將21分以上(含21分)定為優(yōu)秀,請(qǐng)估計(jì)該區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案