數(shù)列1,2,2,3,3,3,4,4,4,4,…中第100項(xiàng)的值是( 。
A、10B、13C、14D、100
考點(diǎn):歸納推理,等差數(shù)列的通項(xiàng)公式
專題:計(jì)算題,推理和證明
分析:易見數(shù)列規(guī)律:值為k的項(xiàng)共有k項(xiàng).由1+2+…+n=
n(n+1)
2
,可得n=13時(shí),
n(n+1)
2
=91,n=14時(shí),
n(n+1)
2
=105,即可得出結(jié)論.
解答: 解:易見數(shù)列規(guī)律:值為k的項(xiàng)共有k項(xiàng).
由1+2+…+n=
n(n+1)
2
,可得n=13時(shí),
n(n+1)
2
=91,n=14時(shí),
n(n+1)
2
=105,
∴數(shù)列1,2,2,3,3,3,4,4,4,4,…中第100項(xiàng)的值是14.
故選:C.
點(diǎn)評(píng):本題考查歸納推理,考查等差數(shù)列的通項(xiàng)公式,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合P={(x,y)|y=k},Q={(x,y)|y=ax+1,a>0,a≠1},已知P∩Q只有一個(gè)子集,那么實(shí)數(shù)k的取值范圍是(  )
A、(-∞,1)
B、(-∞,1]
C、(1,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an},a1=1,an+1=
2an
an+2
(n∈N*),則a5=(  )
A、
1
3
B、
2
5
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

OA
=
a
,
OB
=
b
,則∠AOB的平分線上的向量
OC
為(  )
A、
a
|
a
|
+
b
|
b
|
B、
|
b
|
a
+|
a
|
b
|
a
|+|
b
|
C、λ(
a
|
a
|
+
b
|
b
|
),λ由
DC
確定
D、
a
+
b
|
a
+
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(ax+2)6,f′(x)是f(x)的導(dǎo)數(shù),若f′(x)的展開式中x的系數(shù)大于f(x)的展開式中x的系數(shù),則a的取值范圍是( 。
A、a>
2
5
或-2<a<0或a<-2
B、0<a<
2
5
C、a>
2
5
D、a>
2
5
或a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)字1、2、3、4、5可組成沒(méi)有重復(fù)數(shù)字的三位數(shù)共有( 。
A、10個(gè)B、15個(gè)
C、60個(gè)D、125個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f0(x)=cosx,且對(duì)任意的n∈N,都有 fn+1(x)=fn′(x),則f2013(x)=(  )
A、cosxB、sinx
C、-sinxD、-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=(m-1)2x m2-4m+2在(0,+∞)上單調(diào)遞增,函數(shù)g(x)=2x-k.
(Ⅰ)求m的值;
(Ⅱ)當(dāng)x∈[1,2]時(shí),記f(x),g(x)的值域分別為集合A,B,若A∪B⊆A,求實(shí)數(shù)K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=2”是“直線ax+2y=0與直線x+y=1平行”的
 
條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案