18.已知t=$\int_0^2{(3{x^2}-1)}$dx,若(1+tx)4=a0+a1x+a2x2+a3x3+a4x4,則a1-a2+a3-a4=-624.

分析 先根據(jù)定積分的求出t的值,分別取x=-1,0求出代數(shù)式的值,然后相加減計(jì)算即可得解.

解答 解:t=$\int_0^2{(3{x^2}-1)}$dx=(x3-x)|${\;}_{0}^{2}$=23-2=6,
∵(1+6x)4=a0+a1x+a2x2+a3x3+a4x4,
令x=-1,則625=(1-6)4=a0-a1+a2-a3+a4,
令x=0,則a0=1,
∴a1-a2+a3-a4=-624.
故答案為:-624

點(diǎn)評(píng) 本題考查了代數(shù)式求值,根據(jù)系數(shù)特點(diǎn)x取兩個(gè)特殊值并求出系數(shù)的和是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x∈R|-2≤x≤5},B={x∈R|x2<9},則A∪B等于( 。
A.[-2,3)B.[3,5]C.(-3,5]D.(-∞,-3)∪[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.拋物線y2=2px的焦點(diǎn)為F,點(diǎn)A、B、C在此拋物線上,點(diǎn)A坐標(biāo)為(1,2).若點(diǎn)F恰為△ABC的重心,則直線BC的方程為( 。
A.x+y=0B.2x+y-1=0C.x-y=0D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC中A,B,C所對(duì)的邊分別為a,b,c,$\sqrt{5}$(1-cos2B)=8sinBsinC,A+$\frac{3B}{2}$=π.
(Ⅰ)求cosB的值;
(Ⅱ)若點(diǎn)D在線段BC上,且BD=6,c=5,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=asin2x+(a+1)cos2x,a∈R,則函數(shù)f(x)的最小正周期為π,振幅的最小值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=xsinx(x∈[-π,π])的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(1,1),$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$-λ$\overrightarrow$,如果$\overrightarrow{m}$⊥$\overrightarrow{n}$,那么實(shí)數(shù)λ=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)全集U=R,集合A={y|y=3-x2},B={x|y=log2(x+2)},則(∁UA)∩B=(  )
A.{x|-2<x≤3}B.{x|x>3}C.{x|x≥3}D.{x|x<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3、S9、S6成等差數(shù)列,則下列說(shuō)法錯(cuò)誤的是( 。
A.a3、a6、a9成等比數(shù)列B.a3、a6、a9成等差數(shù)列
C.S2、S8、S5成等比數(shù)列D.S2、S8、S5成等差數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案