【題目】在平面直角坐標系xOy中,曲線C上的點到點的距離與它到直線的距離之比為,圓O的方程為,曲線C與x軸的正半軸的交點為A,過原點O且異于坐標軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中,設直線AB,AC的斜率分別為;
(1)求曲線C的方程,并證明到點M的距離;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、,是否存在常數,使得?若存在,求的值,若不存在,說明理由.
【答案】(1),證明見解析;(2);(3)存在;;
【解析】
(1)利用兩點間距離公式和點到直線的距離公式列出方程,從而求出曲線的方程,并能證明到點的距離;(2)設,則,代入橢圓方程,運用直線的斜率公式,化簡即可得到所求值;(3)聯(lián)立直線和橢圓方程,求得點坐標,再求出直線和直線的斜率,從而得到的值.
(1)曲線上的點到點的距離
與它到直線的距離之比為,
所以可得,
整理得曲線的方程為:,
而是橢圓的右焦點,是橢圓上的點,
所以到點的距離.
(2)設,則,
所以,
所以
.
(3)聯(lián)立,得到,
所以,其中,
所以,,
聯(lián)立,得到,
所以,其中,
所以,,
所以,,
所以,
所以存在常數,使得.
科目:高中數學 來源: 題型:
【題目】設函數x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設a>0,函數g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)參加項目生產的工人為人,平均每人每年創(chuàng)造利潤萬元.根據現(xiàn)實的需要,從項目中調出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調出多少人參加項目從事售后服務工作?
(2)在(1)的條件下,當從項目調出的人數不能超過總人數的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調出的工人所創(chuàng)造的年總利潤,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線的方程為,曲線的方程為.以極點為原點,極軸為軸正半軸建立直角坐標系.
(1)求曲線,的直角坐標方程;
(2)若曲線與軸相交于點,與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數的定義域為,且存在實常數,使得對定義域內的任意,都有恒成立,那么稱此函數具有“性質”.
(1)判斷函數是否具有“性質”,若具有“性質”,求出所有的值,若不具有“性質”,請說明理由;
(2)已知具有“性質”,且當時,,求在的最大值;
(3)已知函數既具有“性質”,又具有“性質”且當時,,若函數圖象與直線的公共點有個,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,拋物線的焦點F是橢圓的頂點.
(1)求與的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經過F,且直線PQ與相切,求的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,為其前n項的和,滿足.
(1)求數列的通項公式;
(2)設數列的前n項和為,數列的前n項和為,求證:當時;
(3)若函數的定義域為R,并且,求證.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數,使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com