分析 由定積分公式計算出a=2,求得(ax-$\frac{1}{x}$)5的通項公式,化簡整理,討論r=2,3即可得到所求常數(shù)項.
解答 解:$a=\int_1^{e^2}{\frac{1}{x}dx}$=lnx|${\;}_{1}^{{e}^{2}}$=lne2-ln1=2,
(ax-$\frac{1}{x}$)5的通項公式為Tr+1=${C}_{5}^{r}$(2x)5-r(-$\frac{1}{x}$)r=${C}_{5}^{r}$25-rx5-2r(-1)r,r=0,1,2,…,5
由題意可得5-2r=1,即r=2,可得T3=${C}_{5}^{2}$23x=80x,
當5-2r=-1,即r=3,可得T4=${C}_{5}^{3}$22x=-40x,
則二項式$({x+\frac{1}{x}}){({ax-\frac{1}{x}})^5}$的展開式中常數(shù)項為80-40=40.
故答案為:40.
點評 本題考查二項式定理的運用:主要是求特定項的系數(shù),注意運用通項公式和分類討論的思想方法,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{{e}^{2}+1}{e}$) | B. | ($\frac{{e}^{2}+1}{e}$,+∞) | C. | $(-\frac{{{e^2}+1}}{e},-2)$ | D. | $(2,\frac{{{e^2}+1}}{e})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{37}{16}$ | B. | $\frac{11}{5}$ | C. | $\sqrt{10}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8\sqrt{2}}{3}$π | B. | 24π | C. | 4$\sqrt{3}$π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com