【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
【答案】(1)見解析;(2)1:1.
【解析】試題分析:(1)取的中點,由等腰三角形及等邊三角形的性質得, ,再根據(jù)線面垂直的判定定理得平面,即得AC⊥BD;(2)先由AE⊥EC,結合平面幾何知識確定,再根據(jù)錐體的體積公式得所求體積之比為1:1.
試題解析:
(1)取AC的中點O,連結DO,BO.
因為AD=CD,所以AC⊥DO.
又由于是正三角形,所以AC⊥BO.
從而AC⊥平面DOB,故AC⊥BD.
(2)連結EO.
由(1)及題設知∠ADC=90°,所以DO=AO.
在中, .
又AB=BD,所以
,故∠DOB=90°.
由題設知為直角三角形,所以.
又是正三角形,且AB=BD,所以.
故E為BD的中點,從而E到平面ABC的距離為D到平面ABC的距離的,四面體ABCE的體積為四面體ABCD的體積的,即四面體ABCE與四面體ACDE的體積之比為1:1.
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=cos( x+ )的圖象,只要把y=cos x的圖象上所有的點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個不同的解,求實數(shù)a的范圍.
(II)當|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,tanA是以﹣4為第三項,4為第七項的等差數(shù)列的公差,tanB是以 為第三項,9為第六項的等比數(shù)列公比,則這個三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)=x2﹣2x﹣4lnx,則f(x)的單調遞增區(qū)間為( )
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,設點F(1,0),直線l:x=﹣1,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
(1)求動點Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求證:直線MN必過定點R(3,0).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com