已知A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若A∩B≠∅,則實數(shù)a的取值范圍是
 
考點(diǎn):交集及其運(yùn)算,拋物線的簡單性質(zhì)
專題:集合
分析:分別畫出集合A={(x,y)|}|x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1}表示的平面圖形,集合A表示一個正方形,集合B表示一個圓,欲使得A∩B≠∅,只需點(diǎn)A或點(diǎn)在圓內(nèi)即可.
解答: 解:分別畫出集合A={(x,y)|}|x-a|+|y-1|≤1},
B={(x,y)|(x-1)2+(y-1)2≤1}表示的平面圖形,
集合A表示一個正方形,
集合B表示一個圓,
如圖所示,
欲使得A∩B≠∅,
只需點(diǎn)A或點(diǎn)在圓內(nèi)即可,
∴(a+1-1)2+(1-1)2≤1
或(a-1-1)2+(1-1)2≤1,
解得-1≤a≤1或1≤a≤3,
即-1≤a≤3.
故答案為:[-1,3].
點(diǎn)評:本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px上任一點(diǎn)到焦點(diǎn)的距離比到y(tǒng)軸距離大1.
(1)求拋物線的方程;
(2)設(shè)A、B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M(4、0),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的兩個焦點(diǎn)坐標(biāo)分別是F1(-2,0),F(xiàn)2(2,0)
(1)若F1到橢圓C的短軸一端點(diǎn)的距離是2
2
,求橢圓的離心率;
(2)若橢圓C經(jīng)過點(diǎn)P(
5
2
,-
3
2
)求橢圓C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
4
x2的準(zhǔn)線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
,若|
a
|=3,|
a
-
b
|=
13
a
b
=
3
2
,則|
b
|=
 
;向量
a
b
夾角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為1,E在CD延長線上,且DE=CD.動點(diǎn)P從點(diǎn)A出發(fā),沿正方形ABCD的邊按逆時針方向運(yùn)動一周回到A點(diǎn),其中
AP
AB
AE
,則下列命題正確的是
 
.(填上所有正確命題的序號)
①λ≥0,μ≥0;
②當(dāng)點(diǎn)P為AD中點(diǎn)時,λ+μ=1;
③若λ+μ=2,則點(diǎn)P有且只有一個;
④λ+μ的最大值為3;
AP
AE
的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線3x+y+b=0經(jīng)過(2,-5),則在y軸上的截距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰三角形ABC中,AB=AC,D在線段AC上,AD=kAC(k為常數(shù),且0<k<1),BD=l為定長,則△ABC的面積最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,
AB
=
a
,
AC
=
b
,G是△ABC的重心,用
a
b
表示
AG
為( 。
A、
1
2
a
+
b
B、
a
+
b
C、
1
3
a
+
b
D、
a
-
b

查看答案和解析>>

同步練習(xí)冊答案