已知x,y滿足約束條件:
x-y+2≤0
x≥0
3x+y-6≤0
,則z=x+3y的最小值
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,求最小值.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=x+3y得y=-
1
3
x+
z
3
,
平移直線y=-
1
3
x+
z
3
,
由圖象可知當直線y=-
1
3
x+
z
3
經(jīng)過點A時,直線y=-
1
3
x+
z
3
的截距最小,
此時z最。
x=0
x-y+2=0
,解得
x=0
y=2
,即A(0,2),
代入目標函數(shù)得z=0+3×2=6.
即z=x+3y的最小值為6.
故答案為:6
點評:本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列結論錯誤的是( 。
A、若“p且q”與“?p或q”均為假命題,則p真q假
B、若命題P:?x∈R,x2-x+1<0,則?P:?x∈R,x2-x+1≥0
C、冪函數(shù)y=f(x)的圖象經(jīng)過點(4,
1
2
),則f(
1
4
)的值為2
D、函數(shù)y=|cos(2x+
π
6
)+
1
2
|的最小正周期為
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax-a+2
(1)若對于任意x∈R,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(2)若對于任意x∈[-1,1],f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)若對于任意a∈[-1,1],x2+2ax-a+2>0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x、y滿足約束條件
x≥0
y≥x
4x+3y≤12
,則
y+1
x+1
取值范圍是( 。
A、[
1
2
,5]
B、[1,3]
C、[1,5]
D、[-1,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(0,
π
2
),β∈(
π
2
,π),且sin(α+β)=
3
5
,cosβ=-
5
13
,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5五個數(shù)中任意取出2個不重復的數(shù)組成一個兩位數(shù),這個兩位數(shù)是偶數(shù)的概率是( 。
A、
1
2
B、
2
5
C、
3
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x+2)與圓O:x2+y2=2交于A、B兩點,若|AB|=2則實數(shù)k的值為(  )
A、±
3
3
B、±
2
2
C、±
2
D、±
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項中的兩個函數(shù)具有相同值域的有( 。﹤
①f(x)=x+1,g(x)=x+2;②f(x)=
x+1
,g(x)=
x+2

③f(x)=x2+1,g(x)=x2+2;④f(x)=
x2
x2+1
,g(x)=
x2
x2+2
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“若x∈(1,10),a=(lgx)2,b=lgx2,c=lg(lgx),則a,b,c的大小順序為( 。
A、c<a<b
B、a<c<b
C、b<c<a
D、a<b<c(

查看答案和解析>>

同步練習冊答案