【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

【答案】
(1)解:若函數(shù) 的真數(shù)為正,

則(ax﹣1)(x﹣1)>0,

當a=1時,函數(shù)f(x)的定義域為{x|x≠1};

當0<a<1時,函數(shù)f(x)的定義域為 ;

當a>1時


(2)解:

函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),

只需要 在區(qū)間[10,+∞)上是增函數(shù),且大于零.

即當x1>x2≥10時, 恒成立.

∵x2﹣x1<0,(x1﹣1)(x2﹣1)>0,

∴k﹣1<0即可.

在區(qū)間[10,+∞)上是增函數(shù),

要使g(x)>0恒成立,

只要


【解析】(1)若函數(shù) 的真數(shù)為正,則(ax﹣1)(x﹣1)>0,分類討論,可得不同情況下函數(shù)f(x)的定義域;(2)若函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),只需要 在區(qū)間[10,+∞)上是增函數(shù),且大于零恒成立,進而得到實數(shù)a的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法和函數(shù)單調(diào)性的判斷方法的相關知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=cos(x+φ)的圖象上每點的橫坐標縮短為原來的 倍(縱坐標不變),再將所得的圖象向左平移 個單位長度后得到的圖象關于坐標原點對稱,則下列直線中是函數(shù)f(x)圖象的對稱軸的是(
A.x=﹣
B.x=
C.x=﹣
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某扇形的面積為4cm2 , 周長為8cm,則此扇形圓心角的弧度數(shù)是;若點(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】右面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損.則甲的平均成績超過乙的平均成績的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,是橢圓)的四個頂點,四邊形是圓的外切平行四邊形,其面積為.橢圓的內(nèi)接的重心(三條中線的交點)為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)的面積是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】專家研究表明,2.5是霾的主要成份,在研究2.5形成原因時,某研究人員研究了2.5與燃燒排放的、等物質(zhì)的相關關系.下圖是某地某月2.5與相關性的散點圖.

(Ⅰ)根據(jù)上面散點圖,請你就2.5的影響關系做出初步評價;

(Ⅱ)根據(jù)有關規(guī)定,當排放量低于排放量達標,反之為排放量超標;當2.5值大于時霧霾嚴重,反之霧霾不嚴重.根據(jù)2.5與相關性的散點圖填寫好下面列聯(lián)表,并判斷有多大的把握認為“霧霾是否嚴重與排放量有關”:

霧霾不嚴重

霧霾嚴重

總計

排放量達標

排放量超標

總計

(Ⅲ)我們知道霧霾對交通影響較大.某市交通部門發(fā)現(xiàn),在一個月內(nèi),當排放量分別是60,120,180時,某路口的交通流量(單位:萬輛)一次是800,600,200,而在一個月內(nèi),排放量是60,120,180的概率一次是,,),求該路口一個月的交通流量期望值的取值范圍.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=
(1)求f(log2 )的值;
(2)求f(x)的最小值.

查看答案和解析>>

同步練習冊答案