對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''是f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.若數(shù)學(xué)公式,請(qǐng)你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)數(shù)學(xué)公式對(duì)稱(chēng)中心為_(kāi)_______;
(2)計(jì)算數(shù)學(xué)公式=________.

解:(1)依題意,得:f′(x)=x2-x+3,∴f″(x)=2x-1.
由f″(x)=0,即2x-1=0.
∴x=,
又 f()=1,
∴函數(shù)的對(duì)稱(chēng)中心為(,1);
(2)由(1)知,若(a,b)與(c,d)為f(x)圖象上的點(diǎn),且關(guān)于點(diǎn)(,1)對(duì)稱(chēng),則有a+c=1,且f(a)+f(c)=2,
設(shè)S=
又S=f()+f()+f()+f()+…+f(),
所以2S=[f()+f()]+…+[f()+f()]=2×2010,
所以S=2010,即=2010.
故答案為:(1)(,1);(2)2010.
分析:(1)先求f′(x)得解析式,再求f″(x),由f″(x)=0 求得拐點(diǎn)的橫坐標(biāo),代入函數(shù)解析式求拐點(diǎn)的縱坐標(biāo).
(2)由(1)知,若(a,b)與(c,d)為f(x)圖象上的點(diǎn),且關(guān)于點(diǎn)(,1)對(duì)稱(chēng),則有a+c=1,且f(a)+f(c)=2,根據(jù)該結(jié)論即可求得答案;
點(diǎn)評(píng):本題考查一階導(dǎo)數(shù)、二階導(dǎo)數(shù)的求法,函數(shù)的拐點(diǎn)的定義以及函數(shù)圖象關(guān)于某點(diǎn)對(duì)稱(chēng)的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱(chēng).
己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問(wèn)題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
 
;
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱(chēng),對(duì)于任意的三次函數(shù)寫(xiě)出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)二模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.給定函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請(qǐng)你根據(jù)上面探究結(jié)果,解答以下問(wèn)題
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對(duì)稱(chēng)中心為
1
2
,1)
1
2
,1)
;
(2)計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)二模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且拐點(diǎn)就是對(duì)稱(chēng)中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數(shù)的對(duì)稱(chēng)中心為
(
1
2
,1)
(
1
2
,1)
,計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心”,且‘拐點(diǎn)’就是對(duì)稱(chēng)中心.請(qǐng)你將這一發(fā)現(xiàn)作為條件.
(1).函數(shù)f(x)=x3-3x2+3x的對(duì)稱(chēng)中心為
(1,2)
(1,2)

(2).若函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,則g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安慶三模)對(duì)于三次函數(shù)f(x)-ax3+bx2+cx+d(a≠0),給出定義:設(shè)ft(x)是函數(shù)y=f(x)的導(dǎo)數(shù),ftt(x)是函數(shù)ft的導(dǎo)數(shù),若方程ftt(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)一元三次函數(shù)都有“拐點(diǎn)”;且該“拐點(diǎn)”也為該函數(shù)的對(duì)稱(chēng)中心.若f(x)=x3-
3
2
x2+
1
2
x+1,則f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案