(13) 已知F1、F2為橢圓的兩個焦點,過F1的直線交橢圓于AB兩點

    若|F2A|+|F2B|=12,則|AB|=              。

8


解析:

本小題主要考查橢圓的第一定義的應用。依題直線過橢圓的 左焦點,在中,,又,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在R上定義運算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常數(shù)),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函數(shù)f(x)在x=1處有極值-
4
3
,試確定b、c的值;
②求曲線y=f(x)上斜率為c的切線與該曲線的公共點;
③記g(x)=|f′(x)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,半焦距為c,直線x=-
a2
c
與x軸的交點為N,滿足
F1F2
=2
NF1
,|
F1F2
|=2
,設A、B是上半橢圓上滿足
NA
NB
的兩點,其中λ∈[
1
5
,
1
3
]

(1)求橢圓的方程及直線AB的斜率k的取值范圍;
(2)過A、B兩點分別作橢圓的切線,兩切線相交于一點P,試問:點P是否恒在某定直線上運動,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知F1、F2為橢圓的焦點,P為橢圓上的任意一點,橢圓的離心率為
1
3
.以P為圓心PF2長為半徑作圓P,當圓P與x軸相切時,截y軸所得弦長為
12
55
9

(1)求圓P方程和橢圓方程;
(2)求證:無論點P在橢圓上如何運動,一定存在一個定圓與圓P相切,試求出這個定圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江蘇一模)已知F1,F(xiàn)2是雙曲線的兩個焦點,以線段F1F2為邊作正△MF1F2,若邊MF1的中點在此雙曲線上,則此雙曲線的離心率為
3
+1
3
+1

查看答案和解析>>

同步練習冊答案