【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差攝氏度

10

11

13

12

8

發(fā)芽

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:

(2)根據(jù)122日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

附:參考公式:

【答案】(1)見解析(2)見解析

【解析】

1的可能取值有,用古典概型概率計(jì)算公式,計(jì)算出分布列,并求出數(shù)學(xué)期望.2)利用回歸直線方程計(jì)算公式計(jì)算出回歸直線方程,并判斷出回歸直線方程是否可靠.

解:(1)由題意知,;

, ,

∴;

的分布列為:

0

2

3

數(shù)學(xué)期望為;

(2)由題意,計(jì)算,

,

所以

關(guān)于的線性回歸方程為

當(dāng)時(shí),,且,

當(dāng)時(shí),,且

∴所求得線性回歸方程是可靠的

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費(fèi)用約0.9萬元,回收1噸廢紙的費(fèi)用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費(fèi)用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吳老師的班上有四名體育健將張明、王亮、李陽、趙旭,他們都特別擅長短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),吳老師要安排他們四人的出場順序,以下是他們四人的對話:

張明:我不跑第一棒和第二棒;

王亮:我不跑第一棒和第四棒;

李陽:我也不跑第一棒和第四棒;

趙旭:如果王亮不跑第二棒,我就不跑第一棒.

吳老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求,據(jù)此我們可以斷定,在吳老師安排的出場順序中,跑第三棒的人是( )

A. 張明B. 王亮C. 李陽D. 趙旭

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為拋物線上在軸下方的一點(diǎn),直線,,與拋物線在第一象限的交點(diǎn)從左到右依次為,,與軸的正半軸分別相交于點(diǎn),,且,直線的方程為.

(1)當(dāng)時(shí),設(shè)直線的斜率分別為,,證明:;

(2)求關(guān)于的表達(dá)式,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)()是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)用函數(shù)單調(diào)性的定義證明函數(shù)上是增函數(shù);

(3)對任意的,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(2,0),B(2,0),焦點(diǎn)在x軸上,離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)點(diǎn)Dx軸上一點(diǎn),過Dx軸的垂線交橢圓C于不同的兩點(diǎn)MN,過DAM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底,為實(shí)常數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊答案