觀察下列式子:,,,,  ,則可以歸納出第個式子為                  

 

【答案】

【解析】

試題分析:∵,,,,∴猜想歸納出第n個式子為

考點:本題考查了歸納推理的運用

點評:歸納推理分為完全歸納和不完全歸納,由歸納推理所得的結(jié)論雖然未必是可靠的,但它由特殊到一般,由具體到抽象的認(rèn)識功能,對科學(xué)的發(fā)現(xiàn)是十分有用的

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:
13=1
23=3+5
33=7+9+11
43=13+15+17+19

由此可以推知,第n行可以寫成n3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:
x
3
,
x3
5
x5
7
,
x7
9
x9
11
,…
它們是按一定規(guī)律排列的,依照此規(guī)律第n個式子是
x2n-1
2n+1
x2n-1
2n+1
(用含n的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟寧一模)觀察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根據(jù)上述規(guī)律,第n個不等式應(yīng)該為
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•青浦區(qū)二模)[理科]觀察下列式子:1+
1
22
3
2
1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,可以猜想結(jié)論為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:x∈(0,+∞),觀察下列式子:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3…
類比有x+
a
xn
≥n+1(n∈N*)
,則a的值為( 。

查看答案和解析>>

同步練習(xí)冊答案