【題目】定義在R上的可導函數(shù)滿足,記的導函數(shù)為,當時恒有.若,則m的取值范圍是( )
A.B.C.D.
【答案】D
【解析】
令g(x)=f(x)x,求得g(x)=g(2﹣x),則g(x)關(guān)于x=1對稱,再由導數(shù)可知g(x)在時為減函數(shù),化f(m)﹣f(1﹣2m)≥3m﹣1為g(m)≥g(1﹣2m),利用單調(diào)性及對稱性求解.
令g(x)=f(x)x,
g′(x)=f′(x)﹣1,當x1時,恒有f'(x)<1.
∴當x1時,g(x)為減函數(shù),
而g(2﹣x)=f(2﹣x)(2﹣x),
∴由得到
f(2﹣x)(2﹣x)=f(x)x
∴g(x)=g(2﹣x).
則g(x)關(guān)于x=1對稱,
由f(m)﹣f(1﹣2m)≥3m﹣1,得f(m)m≥f(1﹣2m)(1﹣2m),
即g(m)≥g(1﹣2m),
∴,即1.
∴實數(shù)m的取值范圍是[﹣1,].
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,且P到拋物線焦點的距離為2直線過點,且與拋物線相交于A,B兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點Q恰為線段AB的中點,求直線的方程;
(Ⅲ)過點作直線MA,MB分別交拋物線于C,D兩點,請問C,D,Q三點能否共線?若能,求出直線的斜率;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設(shè)P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以為首項的數(shù)列滿足:
(1)當,時,求數(shù)列的通項公式;
(2)當,時,試用表示數(shù)列前100項的和;
(3)當(是正整數(shù)),,正整數(shù)時,判斷數(shù)列,,,是否成等比數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在一次期末數(shù)學測試中,為統(tǒng)計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計該校的2000名學生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com