設(shè)函數(shù)f(x)=(其中常數(shù)a>0,且a≠1).
(1)當(dāng)a=10時(shí),解關(guān)于x的方程f(x)=m(其中常數(shù)m>2);
(2)若函數(shù)f(x)在(-∞,2]上的最小值是一個(gè)與a無(wú)關(guān)的常數(shù),求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)當(dāng)a=10時(shí),f(x)=按照分段函數(shù)選擇解析式,
①當(dāng)x<0時(shí),f(x)=>3.因?yàn)閙>2.所以當(dāng)2<m≤3時(shí),方程f(x)=m無(wú)解;當(dāng)m>3,由10x=求解.
②當(dāng)x≥0時(shí),10x≥1.由f(x)=m得10x+=m,轉(zhuǎn)化為(10x2-m10x+2=0.求解.
(2)根據(jù)題意有g(shù)(x)=a|x|+2ax,x∈[-2,+∞),根據(jù)指數(shù)函數(shù),分①當(dāng)a>1時(shí),②當(dāng)0<a<1時(shí),兩種情況分析,每種情況下,根據(jù)絕對(duì)值,再按照x≥0時(shí)和-2≤x<0兩種情況討論.最后綜合取并集.
解答:解:(1)f(x)=(2分)
①當(dāng)x<0時(shí),f(x)=>3.因?yàn)閙>2
則當(dāng)2<m≤3時(shí),方程f(x)=m無(wú)解;
當(dāng)m>3,由10x=,得x=lg.(4分)
②當(dāng)x≥0時(shí),10x≥1.由f(x)=m得10x+=m,
∴(10x2-m10x+2=0.
因?yàn)閙>2,判別式△=m2-8>0,解得10x=
因?yàn)閙>2,所以>1.
所以由10x=,解得x=lg
=1,得m=3.
所以當(dāng)m>3時(shí),==1,
當(dāng)2<m≤3時(shí),==1,解得x=lg
綜上,當(dāng)m>3時(shí),方程f(x)=m有兩解x=lg和x=lg;
當(dāng)2<m≤3時(shí),方程f(x)=m有兩解x=lg.(8分)

(2)①若0<a<1,
當(dāng)x<0時(shí),0<f(x)=<3;
當(dāng)0≤x≤2時(shí),f(x)=ax+
令t=ax,則t∈[a2,1],g(t)=t+在[a2,1]上單調(diào)遞減,
所以當(dāng)t=1,即x=0時(shí)f(x)取得最小值為3.
當(dāng)t=a2時(shí),f(x)取得最大值為
此時(shí)f(x)在(-∞,2]上的值域是(0,],沒(méi)有最小值.(11分)
②若a>1,
當(dāng)x<0時(shí),f(x)=>3;
當(dāng)0≤x≤2時(shí)f(x)=ax+
令t=ax,g(t)=t+,則t∈[1,a2].
①若a2,g(t)=t+在[1,a2]上單調(diào)遞減,
所以當(dāng)t=a2即x=2時(shí)f(x)取最小值a2+,最小值與a有關(guān);(13分)
②a2,g(t)=t+在[1,]上單調(diào)遞減,在[,a2]上單調(diào)遞增,
所以當(dāng)t=即x=loga時(shí)f(x)取最小值2,最小值與a無(wú)關(guān).(15分)
綜上所述,當(dāng)a≥時(shí),f(x)在(-∞,2]上的最小值與a無(wú)關(guān).(16分)
點(diǎn)評(píng):本題主要考查了函數(shù)與方程的綜合運(yùn)用,主要涉及了方程的根,函數(shù)的最值等問(wèn)題,還考查了分類(lèi)討論思想,轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武昌區(qū)模擬)設(shè)函數(shù)f(x)=sinx+cosx,函數(shù)h(x)=f(x)f′(x),下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•無(wú)錫二模)設(shè)函數(shù)f(x)=2x,其反函數(shù)記為f-1(x),則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)?!--BA-->
[2,5]
[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)=2x,其反函數(shù)記為f-1(x),則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)開(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=2x,其反函數(shù)記為f-1(x),則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)?u>    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:無(wú)錫二模 題型:填空題

設(shè)函數(shù)f(x)=2x,其反函數(shù)記為f-1(x),則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)開(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案