已知(
x
-
2
x2
)n
(n∈N*)展開式中二項(xiàng)式系數(shù)和為256.
(1)此展開式中有沒有常數(shù)項(xiàng)?有理項(xiàng)的個(gè)數(shù)是幾個(gè)?并說明理由.
(2)求展開式中系數(shù)最小的項(xiàng).
(1)由題意,二項(xiàng)式系數(shù)和為2n=256,解得n=8,
通項(xiàng)Tr+1=
Cr8
(
x
)8-r•(-
2
x2
)r=
Cr8
(-2)rx
8-5r
2
,
若Tr+1為常數(shù)項(xiàng),當(dāng)且僅當(dāng)
8-5r
2
=0
,即5r=8,且r∈Z,這是不可能的,
∴展開式中不含常數(shù)項(xiàng).
若Tr+1為有理項(xiàng),當(dāng)且僅當(dāng)
8-5r
2
Z,且0≤r≤8,即r=0,2,4,6,8,
∴展開式中共有5個(gè)有理項(xiàng);
(2)設(shè)展開式中第r項(xiàng),第r+1項(xiàng),第r+2項(xiàng)的系數(shù)絕對(duì)值分別為
Cr-18
2r-1,
Cr8
2r
Cr+18
2r+1
,
若第r+1項(xiàng)的系數(shù)絕對(duì)值最大,則
Cr-18
2r-1
Cr8
2r
Cr+18
2r+1
Cr8
2r
,解得5≤r≤6,
又∵r∈Z,
∴r=5或6.
∵r=5時(shí),第6項(xiàng)的系數(shù)為負(fù),r=6時(shí),第7項(xiàng)的系數(shù)為正,
∴系數(shù)最小的項(xiàng)為T6=
C58
(-2)5x-
17
2
=-1792•x-
17
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某果園要將一批水果用汽車從所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由果園承擔(dān).
若果園恰能在約定日期(日)將水果送到,則銷售商一次性支付給果園20萬元; 若在約定日期前送到,每提前一天銷售商將多支付給果園1萬元; 若在約定日期后送到,每遲到一天銷售商將少支付給果園1萬元.
為保證水果新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送水果,已知下表內(nèi)的信息:
      統(tǒng)計(jì)信息
汽車行駛路線
不堵車的情況下到達(dá)城市乙所需 時(shí)間(天)
堵車的情況下到達(dá)城市乙所需時(shí)間(天)
堵車的概率
運(yùn)費(fèi)(萬元)
公路1
2
3


公路2
1
4


 
(注:毛利潤(rùn)銷售商支付給果園的費(fèi)用運(yùn)費(fèi))
(1)記汽車走公路1時(shí)果園獲得的毛利潤(rùn)為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(2)假設(shè)你是果園的決策者,你選擇哪條公路運(yùn)送水果有可能讓果園獲得的毛利潤(rùn)更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a3的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(
32
x-
1
2
)20
的展開式中,系數(shù)是有理數(shù)的項(xiàng)的項(xiàng)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2x3-
1
2x
)7
的展開式中系數(shù)為有理數(shù)的項(xiàng)的個(gè)數(shù)是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(x2-
1
x
)n
展開式中的二項(xiàng)式系數(shù)的和比(3a+2b)7展開式的二項(xiàng)式系數(shù)的和大128,求(x2-
1
x
)n
展開式中的系數(shù)最大的項(xiàng)和系數(shù)最小的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

第十二屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十二屆全國(guó)委員會(huì)第二次會(huì)議,2014年3月在北京召開.為了做好兩會(huì)期間的接待服務(wù)工作,中國(guó)人民大學(xué)學(xué)生實(shí)踐活動(dòng)中心從7名學(xué)生會(huì)干部(其中男生4人,女生3人)中選3人參加兩會(huì)的志愿者服務(wù)活動(dòng).
(1)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望:
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有一種游戲規(guī)則如下:口袋里有5個(gè)紅球和5個(gè)黃球,一次摸出5個(gè),若顏色相同則得100分,若4個(gè)球顏色相同,另一個(gè)不同,則得50分,其他情況不得分,小張摸一次得分的期望是          分.

查看答案和解析>>

同步練習(xí)冊(cè)答案