【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1B1C1=2,A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:

()該幾何體的體積;

()截面ABC的面積.

【答案】(Ⅰ)6;(Ⅱ).

【解析】分析:Ⅰ)過C作平行于A1B1C1的截面A2B2C,交AA1,BB1分別于點A2,B2.由題意可知B2C⊥平面ABB2A2據(jù)此可得V+=6 ,

Ⅱ)在ABC中,由題意可得,據(jù)此可得.

詳解:Ⅰ)過C作平行于A1B1C1的截面A2B2C,交AA1,BB1分別于點A2,B2.

由直三棱柱性質(zhì)及∠A1B1C1=90°可知B2C⊥平面ABB2A2,

則該幾何體的體積V

×2×2×2+××(1+2)×2×2=6 ,

Ⅱ)在ABC中,AB

BC,

AC=2.

SABC×2×

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關”
C.有99%以上的把握認為“生育意愿與城市級別有關”
D.有99%以上的把握認為“生育意愿與城市級別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人獨立來該租車點騎游(各組一車一次).設甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量 ,求 的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點,線段于點.

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標系的原點O的為極點,x軸的正半軸為極軸的極坐標系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標方程;
(2)設直線C和曲線P的交點為A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù) 的圖象,只需把函數(shù) 的圖象上所有的點( )
A.向右平行移動 個單位長度
B.向左平行移動 個單位長度
C.向左平行移動 個單位長度
D.向右平行移動 個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線中心在原點且一個焦點為 ,直線 與其相交于 , 兩點, 中點的橫坐標為 ,則此雙曲線的方程是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案