與拋物線相切傾斜角為的直線L與x軸和y軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為

A.4                B.2        C.2            D. 

 

【答案】

C  

【解析】

試題分析:的準線方程為,x=-2設切線方程為,代入整理得,,則,所以b=-2,切線方程為,A(-2,0),B(0,-2),過A、B兩點的最小圓即以AB為直徑的圓,所以截拋物線的準線所得的弦長為2.選C。

考點:本題主要考查直線與拋物線的位置關系,圓的概念及其方程。

點評:中檔題,由于直線與拋物線相切,因此,兩方程聯(lián)立后所得一元二次方程根的判別式為0,從而可得切線方程。認識到過A、B兩點的最小圓即以AB為直徑的圓,是又一關鍵點。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線經(jīng)過點A(2,1),過A作傾斜角互補的兩條不同直線.

(Ⅰ)求拋物線的方程及準線方程;

(Ⅱ)當直線與拋物線相切時,求直線與拋物線所圍成封閉區(qū)域的面積;

(Ⅲ)設直線分別交拋物線B,C兩點(均不與A重合),若以線段BC為直徑的圓與拋物線的準線相切,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

   已知拋物線經(jīng)過點A(2,1),過A作傾斜角互補的兩條不同直線.

(Ⅰ)求拋物線的方程及準線方程;

(Ⅱ)當直線與拋物線相切時,求直線與拋物線所圍成封閉區(qū)域的面積;

(Ⅲ)設直線分別交拋物線B,C兩點(均不與A重合),若以線段BC為直徑的圓與拋物線的準線相切,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖南省長沙市高考模擬文科數(shù)學試卷(解析版) 題型:選擇題

與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為

A.4                B.2            C.2            D. 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三上學期第一次月考數(shù)學卷 題型:解答題

(本小題滿分14分)

    已知曲線經(jīng)過點A(2,1),過A作傾斜角互補的兩條不同直線.

(Ⅰ)求拋物線的方程及準線方程;

(Ⅱ)當直線與拋物線相切時,求直線與拋物線所圍成封閉區(qū)域的面積;

(Ⅲ)設直線分別交拋物線B,C兩點(均不與A重合),若以線段BC為直徑的圓與拋物線的準線相切,求直線BC的方程.

 

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘