已知以點(diǎn)C為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為坐標(biāo)原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集18講練習(xí)卷(解析版) 題型:選擇題
已知f(x)是定義域?yàn)?/span>R的奇函數(shù),f(-4)=-1,f(x)的導(dǎo)函數(shù)f′(x)的圖像如圖X18-1所示.若兩正數(shù)a,b滿足f(a+2b)<1,則的取值范圍是( )
A. B.(-∞,-1) C.(-1,0) D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集15講練習(xí)卷(解析版) 題型:解答題
如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A,B,定點(diǎn)M的坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點(diǎn)D,E.
(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集14講練習(xí)卷(解析版) 題型:填空題
設(shè)F1,F2為雙曲線-y2=1的兩個(gè)焦點(diǎn),已知點(diǎn)P在此雙曲線上,且·=0.若此雙曲線的離心率等于,則點(diǎn)P到x軸的距離等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集14講練習(xí)卷(解析版) 題型:選擇題
設(shè)P是雙曲線=1左支上一點(diǎn),該雙曲線的一條漸近線方程是3x+4y=0,F1,F2分別是雙曲線的左、右焦點(diǎn),若|PF1|=10,則|PF2|等于( )
A.2 B.2或18 C.18 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:填空題
直線x-y+2=0被圓x2+y2=4截得的劣弧長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:選擇題
已知圓C:x2+y2=2與直線l:x+y+=0,則圓C被直線l所截得的弦長為( )
A.1 B. C.2 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:填空題
如圖所示的是一幾何體的三視圖,則該幾何體的體積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題
若不等式|x+1|+|x-3|≥|m-1|恒成立,則m的取值范圍為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com