精英家教網 > 高中數學 > 題目詳情
解不等式
【答案】分析:由于x2-2和x都在分母中,所以必須討論,當x2-2<0且x≠0以及當x2-2>0時
兩種情況分別求出等價不等式(或不等式組),求解即可.
解答:解:(1)當x2-2<0且x≠0,即當-<x<且x≠0時,原不等式顯然成立.
(2)當x2-2>0時,原不等式與不等式組等價.
x2-2≥|x|,即|x|2-|x|-2≥0.
∴|x|≥2.∴不等式組的解為|x|≥2,
即x≤-2或x≥2.
∴原不等式的解集為(-∞,-2]∪(-,0)∪(0,)∪[2,+∞).
點評:本題考查絕對值不等式,分式不等式,二次不等式的解法,考查分類討論的思想,是綜合題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

解不等式:
(1)
x-42x+5
≤1
;
(2)|2x+1|+|x-2|>4.

查看答案和解析>>

科目:高中數學 來源: 題型:

解不等式
1
x2-2
1
|x|

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在非零實數集上的函數f(x)對任意非零實數x,y恒有f(xy)=f(x)+f(y),當x∈(0,+∞)時,f(x)為增函數,
且f(2)=1.
(1)求f(1),f(-1)的值,并求證:f(x)為偶函數;
(2)判斷并證明f(x)在(-∞,0)的單調性;
(3)解不等式:f(x)-f(x-2)>3.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(
x
)
=
1
x
+2
x

(1)求f(x)的表達式.
(2)設函數g(x)=aχ-
1
x2
+f(x),則是否存在實數a,使得g(x)為奇函數?說明理由;
(3)解不等式f(x)-χ>2.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=|2x+1|+|2x-3|.
(Ⅰ)解不等式f(x)≤6;
(Ⅱ)若關于x的不等式f(x)<|1-2a|有解,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案