【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于厘米的玉米為高莖玉米,否則為矮莖玉米

(1)完成列聯(lián)表,并判斷是否可以在犯錯誤概率不超過的前提下,認為抗倒伏與玉米矮莖有關?

(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出株,再從這株玉米中選取株進行雜交實驗,選取的植株均為矮莖的概率是多少?

,其中

【答案】(1)見解析;(2).

【解析】試題分析:(1)列聯(lián)表,經(jīng)計算,因此可以在犯錯誤概率不超過的前提下,認為抗倒伏與玉米矮莖有關;(2)窮舉得到選取的植株均為矮莖的概率.

試題解析:

(1)根據(jù)統(tǒng)計數(shù)據(jù)做出列聯(lián)表如下:

抗倒伏

易倒伏

合計

矮莖

高莖

合計

經(jīng)計算,因此可以在犯錯誤概率不超過的前提下,認為抗倒伏與玉米矮莖有關.

(2)分層抽樣,高莖玉米有株,設為,,矮莖玉米有株,設為,,,從中取出株的取法有,,,,,共種,其中均為矮莖的選取方式有,,種,因此選取的植株均為矮莖的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心為,半徑為1的圓.

(1)求曲線 的直角坐標方程;

(2)設為曲線上的點, 為曲線上的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達標

課外體育達標

合計

20

110

合計

(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,處取得極值.

①求的值;

②若存在,使得不等式成立,求的最小值;

(2)當時,若上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·石家莊一檢]已知函數(shù)

(1)若,求函數(shù)的圖像在點處的切線方程;

(2)若函數(shù)有兩個極值點,,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項都是正數(shù)的數(shù)列的前項和為,且,數(shù)列滿足,.

(1)求數(shù)列的通項公式;

(2)設數(shù)列滿足,求和

(3)是否存在正整數(shù),,,使得成等差數(shù)列?若存在,求出所有滿足要求的,,,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,的中點,上一點,于點.

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,以為頂點的六面體中,均為等邊三角形,,且平面平面,平面的中點,連接.

(Ⅰ)求證:

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系,曲線的參數(shù)方程為是參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為

(1)求的直角坐標方程和的普通方程

(2)相交于兩點,設點上異于的一點,面積最大時,求點的距離

查看答案和解析>>

同步練習冊答案