【題目】將函數(shù)的圖像向右平移個單位后得到函數(shù),則具有性質(zhì)( )
A.最大值為1,圖像關(guān)于直線對稱
B.周期為,圖像關(guān)于點對稱
C.在上單調(diào)遞增,為偶函數(shù)
D.在上單調(diào)遞減,為奇函數(shù)
【答案】D
【解析】
由三角函數(shù)的圖象變換得到,得到函數(shù)為奇函數(shù),進而利用三角函數(shù)的圖象與性質(zhì),即可得到答案.
將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,顯然,g(x)為奇函數(shù),故排除C.
當(dāng)時,f(x)=0,不是最值,故g(x)的圖象不關(guān)于直線x=對稱,故排除A.
在(0, )上,2x∈(0, ),y=sin2x為增函數(shù),故g(x)=sin2x為單調(diào)遞減,
且g(x)為奇函數(shù),故D滿足條件.
當(dāng)x=時,g(x)= ,故g(x)的圖象不關(guān)于點(,0)對稱,故排除B,
故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左,右頂點分別為,,長軸長為,且經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為橢圓上異于,的任意一點,證明:直線,的斜率的乘積為定值;
(3)已知兩條互相垂直的直線,都經(jīng)過橢圓的右焦點,與橢圓交于,和,四點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間和常數(shù)e,使得對任意,都有,且對任意,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(1)判斷函數(shù)和是否為R上的“平底型”函數(shù)?并說明理由;
(2)若函數(shù)是區(qū)間上的“平底型”函數(shù),求m和n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點的直線交拋物線于兩點,線段的中點為.
(1)求動點的軌跡的方程;
(2)經(jīng)過坐標(biāo)原點的直線與軌跡交于兩點,與拋物線交于點(),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人參加某體育項目訓(xùn)練,近期的五次測試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點并求此點的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,,(),其中數(shù)列、都是遞增數(shù)列.
(1)若,,判斷直線與是否平行;
(2)若數(shù)列、都是正項等差數(shù)列,它們的公差分別為、,設(shè)四邊形的面積為(),求證:也是等差數(shù)列;
(3)若,(),,記直線的斜率為,數(shù)列前8項依次遞減,求滿足條件的數(shù)列的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com