已知a,b∈R+,且滿足a,b,a+b成等差數(shù)列,a,b,ab2成等比數(shù)列,則關(guān)于x的不等式ax2-bx+1≤0的解集為( 。
A、{1}B、[-1,2]
C、RD、∅
考點:一元二次不等式的解法
專題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:由題意,先求出a、b的值,再求不等式ax2-bx+1≤0的解集.
解答: 解:∵a,b,a+b成等差數(shù)列,a,b,ab2成等比數(shù)列,
a+(a+b)=2b
a•ab2=b2
,
b=2a
a2b2=b2
;
又∵a,b∈R+,
∴a=1,b=2;
∴不等式ax2-bx+1≤0為x2-2x+1≤0,
即(x-1)2≤0;
解得x=1,
∴不等式的解集為{1}.
故選:A.
點評:本題考查了等差與等比數(shù)列以及不等式的解法與應(yīng)用問題,是綜合題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為2,前4項的和是2,則前8項的和為( 。
A、16B、31C、34D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的通項公式是an=
na
(n+1)b
,其中a、b均為正常數(shù),那么數(shù)列{an}是(  )
A、遞減數(shù)列
B、遞增數(shù)列
C、常數(shù)列
D、增減性不確定的數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)f(x)=x2(x∈R),g(x)=
1
x
(x<0),h(x)=2elnx.有下列命題:
①F(x)=f(x)-g(x)在x∈(-
1
32
,0)內(nèi)單調(diào)遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為-4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(-4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2
e
x-e.
其中真命題的個數(shù)有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四個同學(xué),爭奪三項冠軍,冠軍獲得者可能有的種類是( 。
A、4
B、24
C、43
D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知不等式(2a-b-c)(a-c)•2n≥(a-b)(b-c)(t•2n+1)對任意a>b>c及n∈N恒成立,則實數(shù)t的取值范圍為 ( 。
A、(-∞,4
2
-1]
B、(-∞,2+2
2
]
C、[4
2
-1,+∞)
D、[2+2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)輸入a的值為2,b的值為-3時,右邊程序運行的結(jié)果是( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算sin45°cos15°+cos45°sin15°=( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使等式[
12
24
]=[
10
02
]M[
10
0-1
]成立的矩陣M.

查看答案和解析>>

同步練習(xí)冊答案