已知a、b是不相等的兩個(gè)正數(shù),在a、b之間插入兩組數(shù)x1,x2,…xn和y1,y2,…yn(n∈N,且n≥2),使得a,x1,x2,…xn,b成等差數(shù)列,a,y1,y2,…yn,b成等比數(shù)列,則下列四個(gè)式子中,一定成立的是
①②
①②
.(填上你認(rèn)為正確的所有式子的序號(hào))
n
k=i
xi=
n(a+b)
2
;②
1
n
n
k=i
xi
=
a+b
2
ab
+(
a
-
b
2
)
2
;③
ny1y2yn
=
ab
;④
ny1y2yn
2ab
a+b
分析:先根據(jù)等差數(shù)列的性質(zhì)和均值不等式可判斷①②正確,再由等比數(shù)列的性質(zhì)可判斷③④不正確.
解答:解:依題意可知,a,x1,x2,…,xn,b成等差數(shù)列,則x1+x2+…+xn=
(x1+xn)•n
2

∵x1+xn=a+b
n
k=1
xk=
n(a+b)
2
成立,故①正確;
1
n
n
k=1
xk
=
a+b
2
ab
+(
a
-
b
2
)
2

∴②成立
當(dāng)a=y1=y2=…=yn=b時(shí),
ny1y2yn
=
ab
,當(dāng)a,y1,y2,…,yn,b不相等時(shí),
ny1y2yn
ab
,
故③④不正確;
故答案為:①②
點(diǎn)評(píng):本題以數(shù)列為載體,考查數(shù)列與不等式的綜合,主要考查等差數(shù)列的性質(zhì)、等比數(shù)列的性質(zhì)和均值不等式的知識(shí).考查綜合運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是不相等的兩個(gè)正數(shù),在a,b之間插入兩組數(shù):x1,x2,…,xn和y1,y2,…,yn,( n∈N*,且n≥2),使得a,x1,x2,…,xn,b成等差數(shù)列,a,y1,y2,…,yn,b成等比數(shù)列.老師給出下列五個(gè)式子:①
n
k=1
xk=
n(a+b)
2
;②
1
n
n
k=1
xk
ab
+(
a
-
b
2
)2
;③
ny1y2yn
ab
;④
ny1y2yn
=
ab
;⑤
ny1y2yn
ab
.其中一定成立的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

按要求證明下列各題.
(1)已知a1+a2+a3+a4>100,用反證法證明a1,a2,a3,a4中,至少有一個(gè)數(shù)大于25;
(2)已知a,b是不相等的正數(shù).用分析法證明a3+b3>a2b+ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是不相等的正數(shù),x=
a
+
b
2
,y=
a+b
,則x,y的大小關(guān)系是
x<y
x<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是不相等的正實(shí)數(shù),求證:(a2b+a+b2)(ab2+a2+b)>9a2b2

查看答案和解析>>

同步練習(xí)冊(cè)答案