【題目】選修4一4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程是 (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)寫出的極坐標方程和的直角坐標方程;

(2)已知點的極坐標分別為,直線與曲線相交于兩點,射線

與曲線相交于點,射線與曲線相交于點,求的值.

【答案】1, 2

【解析】試題分析:1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用 即可化為極坐標方程,同理可得曲線C2的直角坐標方程;
2)由點M1、M2的極坐標可得直角坐標:M101),M22,0),可得直線M1M2的方程為 此直線經過圓心,可得線段PQ是圓x2+y-12=1的一條直徑,可得得OAOB,A,B是橢圓上的兩點,在極坐標下,設A1,θ),B2,θ+) 代入橢圓的方程即可得解.

試題解析:

1曲線的普通方程為,化成極坐標方程為

曲線的直角坐標方程為

2在直角坐標系下, ,可得直線M1M2的方程為 此直線經過圓心,可得線段是圓的直徑

, 是橢圓上的兩點,在極坐標下,設

分別代入中,

,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 + =1(a>b>0)過點A(1, ),其焦距為2.

(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質:若橢圓的方程為 + =1(a>b>0),則橢圓在其上一點A(x0 , y0)處的切線方程為 + =1,試運用該性質解決以下問題:
(i)如圖(1),點B為C1在第一象限中的任意一點,過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點,求△OCD面積的最小值;
(ii)如圖(2),過橢圓C2 + =1上任意一點P作C1的兩條切線PM和PN,切點分別為M,N.當點P在橢圓C2上運動時,是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓E: 的左焦點為F1 , 右焦點為F2 , 離心率e= .過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A1、A2為橢圓 的左右頂點,若在橢圓上存在異于A1、A2的點P,使得 ,其中O為坐標原點,則橢圓的離心率e的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的首項為8,Sn是其前n項的和,某同學經計算得S2=20,S3=36,S4=65,后來該同學發(fā)現(xiàn)了其中一個數(shù)算錯了,則該數(shù)為(
A.S1
B.S2
C.S3
D.S4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC= ,SA=SC=SD=2.
(I)求證:AC⊥SD;
(Ⅱ)求二面角A﹣SB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,且(n+1)an=2Sn(n∈N*),數(shù)列{bn}滿足 ,對任意n∈N* , 都有
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn . 若對任意的n∈N* , 不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).

(1)若A、B為橢圓的焦點,且橢圓經過C、D兩點,求該橢圓的方程;
(2)若A、B為雙曲線的焦點,且雙曲線經過C、D兩點,求雙曲線的方程.

查看答案和解析>>

同步練習冊答案