已知函數(shù)f(x)=alnx+
1
x
(a>0)
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在[1,e]上的最小值為0?若存在,求出a的值;若不存在,請說明理由.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)數(shù)的正負(fù)可得函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)大于0解出x的范圍,然后對a分三種情況討論,利用f(x)在[1,e]上的最小值為0,求a的值.
解答: 解:由題意知x>0,f′(x)=
a
x
-
1
x2
(a>0).(1分)
(1)由f′(x)>0得
a
x
-
1
x2
>0,解得x>
1
a
,
所以函數(shù)f(x)的單調(diào)增區(qū)間是(
1
a
,+∞);
由f′(x)<0得
a
x
-
1
x2
<0,解得x<
1
a
,
所以函數(shù)f(x)的單調(diào)減區(qū)間是(0,
1
a
).
所以當(dāng)x=
1
a
時,函數(shù)f(x)有極小值為f(
1
a
)=aln
1
a
+a=a-aln a.(6分)
(2)由(1)可知,當(dāng)x∈(0,
1
a
)時,f(x)單調(diào)遞減,
當(dāng)x∈(
1
a
,+∞)時,f(x)單調(diào)遞增,
①若0<
1
a
<1,即a>1時,函數(shù)f(x)在[1,e]上為增函數(shù),
故函數(shù)f(x)的最小值為f(1)=aln 1+1=1,顯然1≠0,故不滿足條件.(9分)
②若1≤
1
a
≤e,即
1
e
≤a≤1時,函數(shù)f(x)在[1,
1
a
)上為減函數(shù),在[
1
a
,e]上為增函數(shù),
故函數(shù)f(x)的最小值為f(
1
a
)=aln
1
a
+a=a-aln a=a(1-ln a)=0,即ln a=1,解得a=e,
1
e
≤a≤1,故不滿足條件.(11分)
③若
1
a
>e,即0<a<
1
e
時,函數(shù)f(x)在[1,e]上為減函數(shù),
故函數(shù)f(x)的最小值為f(e)=aln e+
1
e
=a+
1
e
=0.
即a=-
1
e
,而0<a<
1
e
,故不滿足條件.
綜上所述,這樣的a不存在.(12分)
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,考查了分類討論的數(shù)學(xué)思想方法,解答的關(guān)鍵是對a的范圍正確分段,此題是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個扇形的周長為4,求扇形的半徑、圓心角各取何值時,此扇形的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=cos2x+2
3
sinxcosx-sin2x
(1)求f(x)的最小正周期;
(2)若x∈[-
π
12
,
π
4
],則當(dāng)x取何值時函數(shù)取得最值,最值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義在R上的奇函數(shù).
(1)求k的值;
(2)若f(1)=
3
2
,且函數(shù)f(x)在[1,t]上的值域為[
3
2
,
15
4
],求t的值;
(3)設(shè)函數(shù)g(x)=f(x)-f(2-x)+3,x1,x2是R上的任意兩個實(shí)數(shù),且x1+x2=1,若g(mx1)+g(mx2)恒為一個常數(shù),求非零常數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某園藝師用兩種不同的方法培育了一批珍貴樹苗,在樹苗3個月大的時候,隨機(jī)抽 取甲、乙兩種方式培育的樹苗各20株,測量其髙度,得到的莖葉圖如圖(單位:cm):

(Ⅰ)依莖葉圖判斷用哪種方法培育的樹苗的平均高度大?
(Ⅱ)現(xiàn)從用甲種方式培育的高度不低于80cm的樹苗中隨機(jī)抽取兩株,求高度為86cm的樹苗至少有1株被抽中的概率;
(Ⅲ)如果規(guī)定高度不低于85cm的為生長優(yōu)秀,請?zhí)顚懴旅娴?x2列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認(rèn)為樹苗高度與培育方式有關(guān)?”
甲方式乙方式合計
優(yōu)秀
不優(yōu)秀
合計
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求證:1-x≤f(x)≤
1
1+x
;
(2)當(dāng)x≥0時,若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)對給定區(qū)間l上任意兩個實(shí)數(shù)x1,x2都滿足不等式f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,則稱函數(shù)f(x)在區(qū)間l上具有性質(zhì)M.
(1)寫出一個對數(shù)函數(shù)f(x),使得f(x)在(0,+∞)上具有性質(zhì)M;(不需說明理由)
(2)(i)求證:函數(shù)f(x)=x2在區(qū)間[0,+∞)上具有性質(zhì)M;
(ii)設(shè)x,y∈R*,且x 
3
2
+y 
3
2
=a(a為正常數(shù)),試求x3+y3的最小值;
(3)已知函數(shù)f(x)=
x2+2x,x≥-2
x+2,x<-2
,若實(shí)數(shù)a使得f(x)在區(qū)間[a,5](a<5)上具有性質(zhì)M,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2sinθ,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸Ox為x軸建立直角坐標(biāo)系,直線的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與x軸的交點(diǎn)是M,N是曲線C上一動點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=
1
x
是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg
a
x2+1
∈M,求正實(shí)數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2x+x2∈M.

查看答案和解析>>

同步練習(xí)冊答案