【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點分別為F1、F2 , 點P(x0 , )為雙曲線上一點,若△PF1F2的內切圓半徑為1,且圓心G到原點O的距離為 ,則雙曲線的離心率是 .
【答案】
【解析】解:設P為第一象限的點,
圓與F1F2,PF1,PF2的切點分別為A',B,D.
∵|PF1|﹣|PF2|=2a,|PD|=|PB|,|DF1|=|A'F1|,|BF2|=|A'F2|,
即為|PD|+|DF1|﹣|PB|﹣|BF2|=|DF1|﹣|BF2|=|A'F1|﹣|A'F2|=2a,
且|A'F1|+|A'F2|=2c,可得|A'F2|=c﹣a,
則A與A'重合,則|OA'|=|OA|=a,
故 = ,即a=2.
又△PF1F2的面積S= × ×|2c|= (|F1F2|+|PF1|+|PF2|)×1,
∴|PF1|+|PF2|=3c,
∵|PF1|﹣|PF2|=2a,
∴|PF1|= ,|PF2|= ,
∵|PF1|= ,|PF2|= ,聯立化簡得x0=3.
P代入雙曲線方程,聯立解得b= ,c= =3,
即有雙曲線的離心率為e= = .
所以答案是: .
科目:高中數學 來源: 題型:
【題目】如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=
∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直線BC上是否存在一點P,使得DP∥平面EAB?請證明你的結論.
(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護學生的視力,教室內的日光燈在使用一段時間后必須更換.已知某校使用的100只日光燈在必須換掉前的使用天數如下表:
天數/天 | 151~180 | 181~210 | 211~240 | 241~270 | 271~300 | 301~330 | 331~360 | 361~390 |
燈管數/只 | 1 | 11 | 18 | 20 | 25 | 16 | 7 | 2 |
(1)試估計這種日光燈的平均使用壽命;
(2)若定期更換,可選擇多長時間統一更換合適?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,點E是PD的中點.
(1)求證:AC⊥PB;
(2)當二面角E﹣AC﹣D的大小為45°時,求AP的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>0)的焦點在x軸上,且橢圓C的焦距為2. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點R(4,0)的直線l與橢圓C交于兩點P,Q,過P作PN⊥x軸且與橢圓C交于另一點N,F為橢圓C的右焦點,求證:三點N,F,Q在同一條直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D為線段AC的中點.
(1)求證:PA⊥BD.
(2)求證:BD⊥平面PAC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com