設(shè)函數(shù)f(x)=-x3+3x+2分別在x1、x2處取得極小值、極大值.xoy平面上點(diǎn)A、B的坐標(biāo)分別為(x1,f(x1))、(x2,f(x2)),該平面上動(dòng)點(diǎn)P滿足
PA
PB
=4,點(diǎn)Q是點(diǎn)P關(guān)于直線y=x的對稱點(diǎn).
(Ⅰ)求點(diǎn)A、B的坐標(biāo);
(Ⅱ)求動(dòng)點(diǎn)Q的軌跡方程.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,平面向量數(shù)量積的運(yùn)算,軌跡方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)令f'(x)=-3x2+3=0解得x=-1或x=1,從而得函數(shù)在x=-1處取得極小值,在x=1取得極大值,進(jìn)而求出點(diǎn)A、B的坐標(biāo);        
(Ⅱ)設(shè)Q(x,y),P(x0,y0),得(-1-x0,-y0)•(1-x0,4-y.0)=x02-1-4y.0+y02=4,從而得到y(tǒng)2+x2-4x-5=0,即為Q的軌跡方程.
解答: 解:(Ⅰ)令f'(x)=-3x2+3=0解得x=-1或x=1,
當(dāng)x<-1時(shí),f'(x)<0,
當(dāng)-1<x<1時(shí),f'(x)>0,
當(dāng)x>1時(shí),f'(x)<0
所以,函數(shù)在x=-1處取得極小值,在x=1取得極大值,
故x1=-1,x2=1,f(-1)=0,f(1)=4
所以,點(diǎn)A、B的坐標(biāo)為A(-1,0),B(1,4).                 
(Ⅱ)設(shè)Q(x,y),P(x0,y0),
PA
PB
=4,
(-1-x0,-y0)•(1-x0,4-y.0)=x02-1-4y.0+y02=4,
x02+y02-4y0-5=0①,
又∵點(diǎn)Q是點(diǎn)P關(guān)于直線y=x的對稱點(diǎn),∴
x0=y
y0=x
,代入①得:
y2+x2-4x-5=0,即為Q的軌跡方程.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查導(dǎo)數(shù)的應(yīng)用,向量的運(yùn)算,本題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列兩個(gè)變量不是相關(guān)關(guān)系的是( 。
A、人的身高和體重
B、降雪量和交通事故發(fā)生率
C、勻速行駛的車輛的行駛距離和時(shí)間
D、每畝施用肥料量和糧食畝產(chǎn)量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|+|x-4|.
(1)求不等式f(x)<2的解集.
(2)若關(guān)于x的不等式f(x)<2 3a2-7a+4的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)點(diǎn)x=1處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[1,3]上有解,求b的取值范圍;
(Ⅲ)證明:g(x)≥f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(
3
,
1
2
),離心率e=
3
2

(1)求橢圓的方程:
(2)若直線y=kx+2與橢圓有兩個(gè)交點(diǎn),求出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x.
(1)求曲線y=f(x)在x=t處的切線方程;
(2)若在x軸的正半軸上存在一點(diǎn)P(a,0),過點(diǎn)P可作曲線y=f(x)的三條切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
(Ⅰ)a2+b2
(a+b)2
2
;       
(Ⅱ)a2+b2≥2(a-b-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線被直線y=2x+1截得的弦長為
15
.求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某林區(qū)2011年的木材蓄積量為200萬m3,由于采取了封山育林、嚴(yán)禁采伐等措施,使木材蓄積量的年平均增長率達(dá)到了8%.求要經(jīng)過多少年,該林區(qū)的木材蓄積量基本達(dá)到翻兩番的目標(biāo).(lg2=0.3010,lg3=0.4771)

查看答案和解析>>

同步練習(xí)冊答案