(本小題共14分)
如圖,在四棱錐中,平面,底面是菱形,.
 
(Ⅰ)求證:平面
(Ⅱ)若所成角的余弦值;
(Ⅲ)當(dāng)平面與平面垂直時,求的長.

:證明:(Ⅰ)因為四邊形ABCD是菱形,所以又因為平面。所以,
所以平面。
(Ⅱ)設(shè),因為
所以,如圖,以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,則設(shè)所成角為,則
(Ⅲ)由(Ⅱ)知設(shè)。則設(shè)平面的法
向量,所以,
所以同理,平面的法向量,因為平面,所以,即解得,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓與圓內(nèi)切于點,其半徑分別為,圓的弦交圓于點不在上),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-1:幾何證明選講
如圖所示,設(shè)的外接圓的切線的延長線交于點,邊上有一點,滿足組成等比數(shù)列。求證:平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,切圓于點,割線經(jīng)過圓心,繞點逆時針旋轉(zhuǎn),則的長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—1:幾何證明選講。如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,
OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)到OD.
(1)求線段PD的長;
(2)在如圖所示的圖形中是否有長度為的線段?若有,指出該線段;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,分別為上的點,且,的面積是,梯形的面積為,則的值為(    )
A.               B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知與圓相切于點,半徑,于點

(Ⅰ)求證:;
(Ⅱ)若圓的半徑為3,,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖所示,AC和AB分別是圓O的切線,B、C 為切點,且OC = 3,AB = 4,延長AO到D點,則△ABD的面積是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選做題)如圖,已知:△內(nèi)接于
的延長線上,是圓的切線,若,
,則的長為    .

查看答案和解析>>

同步練習(xí)冊答案