【題目】已知函數(shù) .

(1)若對于任意的 恒成立,求實數(shù)的取值范圍;

(2)若,設(shè)函數(shù)在區(qū)間上的最大值、最小值分別為、,記,求的最小值.

【答案】(1) ;(2) 的最小值為.

【解析】試題分析:(1)變形得,構(gòu)造函數(shù),求導(dǎo),根據(jù)單調(diào)性求出最大值,所以, ;(2),求出,對實數(shù)分情況討論,得出在(1,2)上的單調(diào)性,求出最大值、最小值,再求出的最小值。

試題解析

(1)因為對任意的恒成立,

所以.

, ,則.

,則.

當(dāng)時, 在區(qū)間上單調(diào)遞增;

當(dāng)時, , 在區(qū)間上單調(diào)遞減.

所以,

所以,即,

所以實數(shù)的取值范圍為.

(2)因為

所以, .

所以.

,則.

①若,

當(dāng)時, , 在區(qū)間上單調(diào)遞減;

當(dāng)時, , 在區(qū)間上單調(diào)遞增.

又因為,

所以 ,

所以.

因為

所以在區(qū)間上單調(diào)遞減,

所以當(dāng)時, 的最小值為.

②若

當(dāng)時, , 在區(qū)間上單調(diào)遞減;

當(dāng)時, 在區(qū)間上單調(diào)遞增.

又因為,

所以, .

因為

所以在區(qū)間上單調(diào)遞增.

所以當(dāng)時, .

③若,

當(dāng)時, , 在區(qū)間上單調(diào)遞減,

所以 .

所以,

所以在區(qū)間上的最小值為.

綜上所述, 的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對象,他們從大學(xué)畢業(yè),沒有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國際花園城市”稱號的溫江幸福田園,就有一個由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時代”,其獨特的裝修風(fēng)格和經(jīng)營模式,引來無數(shù)人的關(guān)注,帶來紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經(jīng)營后每年的總收入為50萬元,第n年需要付出房屋維護(hù)和工人工資等費用是首項為12,公差為4的等差數(shù)列(單位:萬元).

1)求;

2)該農(nóng)家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費用之差為正值)

3)該農(nóng)家樂經(jīng)營多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利年總獲利

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點At,1)為函數(shù)yax2+bx+4ab為常數(shù),且a≠0)與yx圖象的交點.

1)求t;

2)若函數(shù)yax2+bx+4的圖象與x軸只有一個交點,求a,b;

3)若1≤a≤2,設(shè)當(dāng)x≤2時,函數(shù)yax2+bx+4的最大值為m,最小值為n,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前某地區(qū)有100萬人,經(jīng)過x年后為y萬人,如果年平均增長率是1.2%,請回答下列問題:

1)試推算出y關(guān)于x的函數(shù)關(guān)系式;

2)計算10年后該地區(qū)的人口總數(shù)(精確到0.1萬人);

3)計算大約多少年后該地區(qū)的人口總數(shù)會達(dá)到120萬(精確到1年).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域為[a1,2a],則a________b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實數(shù)a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.

(1)證明:2a+b=2;

(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列隨機(jī)事件:

①某射手射擊一次,可能命中環(huán),環(huán),環(huán),環(huán);

②一個小組有男生人,女生人,從中任選人進(jìn)行活動匯報;

③一只使用中的燈泡壽命長短;

④拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況;

⑤中秋節(jié)前夕,某市有關(guān)部門調(diào)查轄區(qū)內(nèi)某品牌的月餅質(zhì)量,給該品牌月餅評“優(yōu)”或“差”.

這些事件中,屬于古典概型的是________.

查看答案和解析>>

同步練習(xí)冊答案