【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與軸平行,求;
(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.
【答案】(Ⅰ)a=e;(Ⅱ)a的最大值為2e;
【解析】
(Ⅰ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)條件列方程解得a;(Ⅱ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點(diǎn)與1大小分類討論,根據(jù)函數(shù)單調(diào)性確定函數(shù)最小值,最后根據(jù)最小值大于零,解得a的取值范圍,即得最大值.
(Ⅰ)∵,∴f'(x)=exa,∴f'(1)=ea,
由題設(shè)知f'(1)=0,即ea=0,解得a=e.
經(jīng)驗(yàn)證a=e滿足題意.
(Ⅱ)令f'(x)=0,即ex=a,則x=lna,
(1)當(dāng)lna<1時(shí),即0<a<e
對于任意x∈(-∞,lna)有f'(x)<0,故f(x)在(-∞,lna)單調(diào)遞減;
對于任意x∈(lna,1)有f'(x)>0,故f(x)在(lna,1)單調(diào)遞增,
因此當(dāng)x=lna時(shí),f(x)有最小值為成立.所以0<a<e,
(2)當(dāng)lna≥1時(shí),即a≥e對于任意x∈(-∞,1)有f'(x)<0,
故f(x)在(-∞,1)單調(diào)遞減,所以f(x)>f(1).
因?yàn)?/span>f(x)的圖象恒在x軸上方,所以f(1)≥0,即a≤2e,
綜上,a的取值范圍為(0,2e],所以a的最大值為2e.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動,且,若動點(diǎn)滿足.
(1)求出動點(diǎn)P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對比試驗(yàn)的方法評價(jià)不同心理暗示對人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)是單位圓x2+y2=1上兩點(diǎn),|AB|=1,則∠AOB=______;|y1+2|+|y2+2|的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下列四個(gè)命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四棱錐可繞著任意旋轉(zhuǎn),平面.若,,則正四棱錐在面內(nèi)的投影面積的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點(diǎn)作的垂線,交的延長線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動場地,如圖所示,其中是足球場地邊線所在的直線,球門處于所在直線的正中間位置,足球運(yùn)動員(將其看做點(diǎn))在運(yùn)動場上觀察球門的角稱為視角.
(1)當(dāng)運(yùn)動員帶球沿著邊線奔跑時(shí),設(shè)到底線的距離為碼,試求當(dāng)為何值時(shí)最大;
(2)理論研究和實(shí)踐經(jīng)驗(yàn)表明:張角越大,射門命中率就越大.現(xiàn)假定運(yùn)動員在球場都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動到視角最大的位置即為最佳射門點(diǎn),以的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場區(qū)域內(nèi)射門到球門的最佳射門點(diǎn)的軌跡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com